R23 REGULATIONS

B.TECH. – ELECTRONICS AND COMMUNICATION ENGINEERING

B.Tech. - III Year I Semester

S.No.	Category	Title	L	T	P	Credits
1	23ECT10	Analog and Digital IC Applications	3	0	0	3
2	23ECT11	Antennas & Wave Propagation	3	0	0	3
3	23ECT12	Microprocessors and Microcontrollers	3	0	0	3
4	23CST24 23ECT13a 23ECT13b	Professional Elective-I 1. Computer Architecture & Organization 2. Information theory and coding 3. Detection and Estimation Theory	3	0	0	3
5		Open Elective-I	3	0	0	3
6	23ECP06	Analog & Digital IC Applications Lab	0	0	3	1.5
7	23ECP07	Microprocessors and Microcontrollers Lab	0	0	3	1.5
8	23ECP08	Skill oriented course -III PCB Design and Prototype development.	0	1	2	2
9	23ECP09	Tinkering Lab	0	0	2	1
10	23CSI401	Evaluation of Community Service Internship	-	-	-	2
11	23CST12	Introduction to Quantum Technologies and Applications	3	0	0	3
		Total	18	1	10	26

Open Elective-I

Opc	n Elective-1		
S.No.	Course code	Course Name	Course offered by the Department
1	23CET12	Green Buildings	CIVIL
2	23CET13	Construction Technology and Management	CIVIL
3	23EET13	Electrical Safety Practices and Standards	EEE
4	23MET14	Sustainable Energy Technologies	ME
5	23CST25	Java Programming	
6	23AIT07	Fundamentals of Artificial Intelligence	CSE& Allied/IT
7	23CST13	Quantum Technologies and Applications	
8	23BST19	Mathematics for Machine Learning and AI	Mathematics
9	23BST20	Materials Characterization Techniques	Physics
10	23BST21	Chemistry of Energy Systems	Chemistry
11	23BST22	English for Competitive Examinations	Humanities
12	23BST23	Entrepreneurship and New Venture Creation	Humanics

B.Tech. III Year II Semester

S.No.	Category	Title	L	T	P	Credits
1	23ECT18	Digital Signal Processing	3	0	0	3
2	23ECT19	Microwave and Optical Communications	3	0	0	3
3	23ECT20	VLSI Design	3	0	0	3
4	23ECT21a 23ECT21b 23ECT21c	Professional Elective-II 1. Electronic Measurements and Instrumentation 2. Embedded systems & IOT 3. Speech Processing	3	0	0	3
5	23ECT22a 23CST26 23ECT22b	Professional Elective-III 1.Digital Image Processing 2.Artificial Intelligence & Machine learning 3.Satellite Communications	3	0	0	3
6		Open Elective-II	3	0	0	3
7	23ECP11	Microwave and Optical Communications Lab	0	0	3	1.5
8	23ECP12	VLSI Design Lab	0	0	3	1.5
9	23ECP13	Skill oriented course –IV Machine Learning and DSP	0	1	2	2
10	23BST28	Technical Paper Writing & IPR	2	0	0	-
		Total	20	1	08	23

Open Elective-II

S.No.	Course code	Course Name	Course offered by the Department
1	23CET19	Disaster Management	CIVIL
2	23CET20	Sustainability In Engineering Practices	
3	23EET18	Renewable Energy Sources	EEE
4	23MET20	Automation and Robotics	ME
5	23CST20	Operating Systems	CSE& Allied/IT
6	23CST27	Introduction to Machine Learning	
7	23BST24	Operations Research	Mathematics
8	23BST29	Mathematical Foundation of Quantum Technologies	
9	23BST25	Physics Of Electronic Materials And Devices	Physics
10	23BST26	Chemistry Of Polymers And Applications	Chemistry
11	23BST27	Academic Writing and Public Speaking	Humanities

B.TECH. – III YEAR I SEMESTER

Course Code	ANALOG AND DIGITAL IC APPLICATIONS	L	T	P	C
23ECT10		3	0	0	3
	Semester				V

Course Objectives:

- 1. To introduce the classification of Integrated Circuits, internal blocks and characteristics of Op-Amp.
- 2. To analyse linear and non-linear applications of Op-Amp.
- 3. To gain knowledge on active filters, timers and phased locked loops.
- 4. To understand the working of Voltage Regulators and Converters.
- 5. To study about different types of Digital ICs and their applications.

Course Outcomes: At the end of the course, the students will be able to

- 1. Understand the classification of Integrated Circuits, internal blocks and characteristics of Op-Amp.
- 2. Analyse linear and non-linear applications of Op-Amp.
- 3. Gain knowledge on active filters, timers and phased locked loops.
- 4. Understand the working of Voltage Regulators and Converters.
- 5. Know about different types of Digital ICs and their applications.

UNIT I ICs and OP-AMPS

Integrated Circuits and Operational Amplifier: Introduction, Classification of IC's, IC chip size and circuit complexity, basic information of Op-Amp IC741 and its features, the ideal Operational amplifier, Op-Amp internal circuit, Op-Amp characteristics - DC and AC, Features of 741 Op-Amp.

UNIT II Applications of OP- AMP

Linear Applications of Op-Amp: Inverting, non-inverting, Differential amplifiers, adder, subtractor, Instrumentation amplifier, AC amplifier, V to I and I to V converters, Integrator and differentiator.

Non-Linear Applications of Op-Amp: Sample and Hold circuit, Log and Antilog amplifier, multiplier and divider, Comparators, Schmitt trigger, Multi vibrators, Triangular and Square waveform generators, Oscillators.

UNIT III Active Filters and other ICs

Active Filters: Introduction, Butterworth filters -1_{st} order, 2_{nd} order low pass and high pass filters, band pass, band reject and all pass filters.

Timer and Phase Locked Loops: Introduction to IC 555 timer, description of functional diagram, monostable and a stable operations and applications, Schmitt trigger, PLL - introduction, basic principle, phase detector/comparator, voltage controlled oscillator (IC 566),

low pass filter, monolithic PLL and applications of PLL.

UNIT IV Voltage Regulators and Converters

Voltage Regulator: Introduction, Series Op-Amp regulator, IC Voltage Regulators, IC 723 general purpose regulators, Switching Regulator.

D to A and A to D Converters: Introduction, basic DAC techniques - weighted resistor DAC, R-2R ladder DAC, inverted R-2R DAC, A to D converters - parallel comparator type ADC, counter type ADC, successive approximation ADC and dual slope ADC, DAC and ADC Specifications.

UNIT V Digital ICs

CMOS Logic: CMOS logic levels, MOS transistors, Basic CMOS Inverter, NAND and NOR gates, CMOS AND-OR-INVERT and OR-AND-INVERT gates, implementation of any function using CMOS logic.

Combinational Logic IC's: Specifications and Applications of TTL-74XX & CMOS 40XX Series ICs - Code Converters, Decoders, Encoders, Priority Encoders, Multiplexers, Demultiplexers, Parallel Binary Adder/ Subtractor, Magnitude Comparators.

Sequential Logic IC's: Familiarity with commonly available 74XX & CMOS40XX Series ICs - All Types of Flip-flops, Synchronous Counters, Decade Counters, Shift Registers.

Textbooks:

- 1. D. Roy Choudhury, Shail B. Jain, —Linear Integrated Circuitl, 4th edition (2012), New Age International Pvt.Ltd., New Delhi, India
 - 2. Floyd, Jain, —Digital Fundamentals, 8th edition (2009), Pearson Education, New Delhi.

References:

- 1. Ramakant A. Gayakwad, —OP-AMP and Linear Integrated Circuits^{||}, 4th edition (2012), Prentice Hall / Pearson Education, New Delhi.
- 2. Sergio Franco (1997), Design with operational amplifiers and analog integrated circuits, McGraw Hill, New Delhi.
- 3. Gray, Meyer (1995), Analysis and Design of Analog Integrated Circuits, Wiley International, New Delhi.

Course Code	ANTENNAS & WAVE PROPAGATION	L	T	P	C
23ECT11		3	0	0	3
Semester					7

Course Objectives:

- 1. To learn the antennas basic terminology, radiation mechanism of antennas and dipole antennas.
- 2. To gain knowledge on HF, VHF & UHF antennas, their operation and applications.
- 3. Analyze the working and applications of Microwave antennas.
- 4. Understand different techniques involved in the design of antenna arrays and antenna parameter measurements.
- 5. To study the various types of radio wave propagation methods.

Course Outcomes: At the end of this course, the students will be able to

- 1. Understand the antennas basic terminology and radiation mechanism of antennas.
- 2. Gain knowledge on VHF and UHF antennas, their operation and applications.
- 3. Design and analyze the working and applications of Microwave antennas.
- 4. Analyze different techniques involved in the design of antenna arrays and antenna parameter measurements.
- 5. Gain a comprehensive knowledge about the types of radio wave propagation methods.

UNIT - I

Antenna Basics & Dipole antennas: Definition of antenna, Radiation Mechanism – single wire, two wire, dipoles, Antenna Parameters - Radiation Patterns, Main Lobe and Side Lobes, Beam widths, Beam Area, Radiation Intensity, Beam Efficiency, Directivity, Gain and Resolution, Aperture Efficiency, Effective Height and length, Antenna Theorems. Radiation – Basic Maxwell's equations, Retarded potential-Helmholtz Theorem, Radiation from Small Electric Dipole, Quarter wave Monopole and Half wave Dipole – Current Distributions, Field Components, Radiated power, Radiation Resistance, Beam width, Natural current distributions, far fields and patterns of Thin Linear Center-fed Antennas of different lengths, Illustrative problems.

UNIT-II

HF, VHF and UHF Antennas: Loop Antennas - Introduction, Small Loop, Comparison of far fields of small loop and short dipole, Radiation Resistances and Directives of small and large loops (Qualitative Treatment), Arrays with Parasitic Elements - Yagi - Uda Arrays, Folded Dipoles & their characteristics. Log periodic Antenna, Helical Antennas-Helical Geometry, Helix modes, Practical Design considerations for Monofilar Helical Antenna in Axial and Normal Modes. Horn Antennas- Types, Fermat's Principle, Optimum Horns, Design considerations of Pyramidal Horns, Illustrative Problems.

UNIT-III

Microwave Antennas : Microstrip Antennas- Introduction, features, advantages and limitations, Rectangular patch antennas- Geometry and parameters, characteristics of Micro strip antennas, Impact of different parameters on characteristics, reflector antennas - Introduction, Flat sheet and corner reflectors, parabola reflectors- geometry, pattern characteristics, Feed Methods, Reflector Types - Related Features, Lens Antennas - Geometry of Non-metallic Dielectric Lenses, Zoning, Tolerances, Applications, Illustrative Problems.

UNIT-IV

Antenna Arrays: Point sources - Definition, Patterns, arrays of 2 Isotropic sources- Different cases, Principle of Pattern Multiplication, Uniform Linear Arrays - Broadside Arrays, Endfire Arrays, EFA with Increased Directivity, Derivation of their characteristics and comparison, BSAa with Non-uniform Amplitude Distributions - General considerations and Bionomial Arrays, Illustrative problems.

Antenna Measurements: Introduction, Sources of errors, Patterns to be Measured, Pattern Measurement Arrangement, Directivity Measurement, Gain Measurements (by comparison, Absolute and 3-Antenna Methods).

UNIT-V

Wave Propagation: Introduction, Definitions, Characterizations and general classifications, different modes of wave propagation, Ray/Mode concepts, Ground wave propagation (Qualitative treatment) - Introduction, Plane earth reflections, Space and surface waves, wave tilt, curved earth reflections, Space wave propagation - Introduction, field strength variation with distance and height, effect of earth's curvature, absorption, Super refraction, M-curves and duct propagation, scattering phenomena, tropospheric propagation, fading and path loss calculations, Sky wave propagation - Introduction, structure of Ionosphere, refraction and reflection of sky waves by Ionosphere, Ray path, Critical frequency, MUF, LUF, OF, Virtual height and Skip distance, Relation between MUF and Skip distance, Multi-HOP propagation, Energy loss in Ionosphere, Summary of Wave Characteristics in different frequency ranges, Illustrative problems.

TEXT BOOKS:

- 1. John D. Kraus, Ronald J. Marhefka and Ahmad S.Khan, —Antennas and wave propagation , TMH, New Delhi, 4th Ed., 2010.
- 2. C.A. Balanis, —Antenna Theory- Analysis and Design, John Wiley & Sons, 2nd Edn., 2001.
- 3. K.D. Prasad and SatyaPrakashan, —Antennas and Wave Propagation^{II}, New Delhi, Tech. India Publications, 2001.

REFERENCES:

- 1. E.C. Jordan and K.G. Balmain, —Electromagnetic Waves and Radiating Systems^{||}, 2nd Edition, PHI, 2000.
- 2. G.S.N Raju, —Antenna and Wave Propagation, Pearson Education India, 3rd Edition 2009.
- 3. R K Shevgaonkar, | Electromagnetic Waves||. Tata McGraw-Hill, 2006

Course Code	MICROPROCESSORS AND	L	T	P	C
23ECT12	MICROCONTROLLERS	3	0	0	3
Semester					7

Course Objectives:

- 1. To learn the fundamental architectural concepts of microprocessors.
- 2. To gain knowledge about assembly language programming concepts.
- 3. To get familiar about 8086 interfacing.
- 4. To understand the fundamentals of the 8051 Microcontroller.
- 5. To learn interfacing with the 8051 Microcontroller.

Course Outcomes: At the end of this course, the students will be able to

- 1. Learn the fundamental architectural concepts of microprocessors.
- 2. Gain knowledge about assembly language programming concepts.
- 3. Understand the concepts of 8086 interfacing.
- 4. Learn the fundamentals of the 8051 Microcontroller.
- 5. Know the interfacing with the 8051 Microcontroller.

UNIT I 8086 Architecture: Main features, pin diagram/description, 8086 microprocessor family, internal architecture, bus interfacing unit, execution unit, interrupts and interrupt response, 8086 system timing, minimum mode and maximum mode configuration.

UNIT II 8086 Programming: Program development steps, instructions, addressing modes, assembler directives, writing simple programs with an assembler, assembly language program development tools.

UNIT III 8086 Interfacing: Semiconductor memories interfacing (RAM, ROM), Intel 8255 programmable peripheral interface, Interfacing switches and LEDS, Interfacing seven segment displays, software and hardware interrupt applications, Intel 8251 USART architecture and interfacing, Intel 8237a DMA controller, stepper motor, A/D and D/A converters, Need for 8259 programmable interrupt controllers.

UNIT IV Microcontroller : Architecture of 8051 – Special Function Registers(SFRs) - I/O Pins Ports and Circuits - Instruction set - Addressing modes - Assembly language programming.

UNIT V Interfacing Microcontroller :- Programming 8051 Timers - Serial Port Programming - Interrupts Programming - LCD & Keyboard Interfacing - ADC, DAC & Sensor Interfacing - External

Memory Interface- Stepper Motor and Waveform generation - Comparison of Microprocessor, Microcontroller, PIC and ARM processors

Textbooks:

- 1. Microprocessors and Interfacing Programming and Hardware by Douglas V Hall, SSSP Rao, Tata McGraw Hill Education Private Limited, 3rdEdition,1994.
- 2. K M Bhurchandi, A K Ray, Advanced Microprocessors and Peripherals, 3rd edition, McGraw Hill Education, 2017.
- 3. Raj Kamal, Microcontrollers: Architecture, Programming, Interfacing and System Design, 2nd edition, Pearson, 2012.

References:

- 1. Ramesh S Gaonkar, Microprocessor Architecture Programming and Applications with the 8085, 6th edition, Penram International Publishing, 2013.
- 2. Kenneth J. Ayala, The 8051 Microcontroller, 3rd edition, Cengage Learning, 2004.

Course Code	Computer Architecture & Organization	L	T	P	C
23CST24	Professional Elective-I	3	0	0	3
Semester					7

Course Objectives:

- 1. To learn the design of various functional units of digital computers and performance issues of computer systems.
- 2. To understand the basic processing unit and their connections.
- 3. To get familiar with different types of Data representation and Computer Arithmetic operations.
- 4. To know about different types of memory and their interconnections.
- 5. To learn the basics of parallel computing and pipelining.

Course Outcomes: At the end of this course, the students will be able to

- 1. Learn the design of various functional units of digital computers and performance issues of computer systems.
- 2. Understand the basic processing unit and their connections.
- 3. Know about different types of Data representation and Computer Arithmetic operations.
- 4. Learn about different types of memory and their interconnections.
- 5. Understand the basics of parallel computing and pipelining.

UNIT I Digital Computers:

Introduction, Block diagram of Digital Computer, Definition of Computer Organization, Computer Design and Computer Architecture.

Register Transfer Language and Micro operations: Register Transfer language, Register Transfer, Bus and memory transfers, Arithmetic Micro operations, logic micro operations, shift micro operations, Arithmetic logic shift unit.

Basic Computer Organization and Design: Instruction codes, Computer Registers Computer instructions, Timing and Control, Instruction cycle, Memory Reference Instructions, Input – Output and Interrupt.

UNIT II

Micro programmed Control: Control memory, Address sequencing, micro program example, design of control unit.

Central Processing Unit: General Register Organization, Instruction Formats, Addressing modes, Data Transfer and Manipulation, Program Control.

UNIT III Data Representation:

Data types, Complements, Fixed Point Representation, Floating Point Representation.

Computer Arithmetic: Addition and subtraction, multiplication Algorithms, Division Algorithms, Floating – point Arithmetic operations. Decimal Arithmetic unit, Decimal Arithmetic operations.

UNIT IV Input-Output Organization: Input-Output Interface, Asynchronous data transfer, Modes of Transfer, Priority Interrupt Direct memory Access.

Memory Organization: Memory Hierarchy, Main Memory, Auxiliary memory, Associate Memory, Cache Memory.

UNIT V Reduced Instruction Set Computer: CISC Characteristics, RISC Characteristics. Pipeline and Vector Processing: Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction Pipeline, RISC Pipeline, Vector Processing, Array Processor. Multi Processors: Characteristics of Multiprocessors, Interconnection Structures, Inter-processor arbitration, Inter-processor communication and synchronization, Cache Coherence.

Textbook:

1. Computer System Architecture – M. Moris Mano, Third Edition, Pearson/PHI.

References:

- 1. Computer Organization Car Hamacher, ZvonksVranesic, SafeaZaky, Vth Edition, McGraw Hill.
- 2. Computer Organization and Architecture William Stallings Sixth Edition, Pearson/PHI.
- 3. Structured Computer Organization Andrew S. Tanenbaum, 4th Edition, PHI/Pearson.

Course Code	INFORMATION THEORY AND CODING	L	T	P	C
23ECT13a	Professional Elective-I	3	0	0	3
Semester				7	7

Course Objectives:

- 1. To provide an insight into the concept of information in the context of communication theory and communication receivers.
- 2. To implement various source coding algorithms and analyze their performance.
- 3. To gain knowledge about techniques for error detection and error correction.
- 4. To design linear block codes and cyclic codes.
- 5. To get familiar with various convolutional codes.

Course Outcomes: At the end of this course, the students will be able to

- 1. Learn the concepts of information in the context of communication theory and communication receivers.
- 2. Implement various source coding algorithms and analyze their performance.
- 3. Gain knowledge about techniques for error detection and error correction.
- 4. Design linear block codes and cyclic codes.
- 5. Understand various convolutional codes.

UNIT I

Information Theory: Introduction, Definition of Entropy, Conditional Entropy, Relative Entropy, Basic Properties of Entropy, Mutual Information, Information Inequalities, Information Capacity, Channel Capacity, Problem solving.

Block to Variable length Coding: Prefix-free Code, Coding a single Random Variable, Prefix, Free Code, Kraft Inequality, Bounds on optimal Code length, Coding a Single Random Variable, Rooted Tree with Probabilities, Shanon-Fano Coding, Free fix code, Coding an information Source, Huffman Coding, Example.

Variable to Block Length Coding: Proper message set, Assigning probabilities to K-ary rooted tree corresponding to a proper message set, Prefix free Coding of a proper message set, Tunstall message set, Tunstall coding.

UNIT II Asymptotic Equi-partition Property, Chebyshev inequality, Weak law of large numbers, Typical Sequences, Block to Block Coding of DMS: Consequences of Asymptotic Equipartition Property, Problem solving.

Universal Source Coding: Lempel-Ziv Algorithm, LZ -77 Encoding and Decoding, Lempel- Ziv Welch (LZW) Algorithm, LZW Encoding, and Decoding, Coding of Sources with memory, Channel Capacity, Noisy Channel Coding Theorem, Differential Entropy, Gaussian Channel, Rate Distortion Theory, Blahut-Arimoto Algorithm, problem solving.

UNIT III

Error Control Coding: Introduction to Error Control Codes, Error Probability with Repetition in the Binary Symmetric Channel, Parity Check Bit Coding for Error Detection, Block Coding for Error Detection and Correction, The Hamming Distance, The upper bound of the Probability of Error with Coding, Soft Decision Decoding, Hard Decision Decoding.

UNIT IV

Linear Block Codes: Introduction to Linear Block Codes, Syndrome and Error Detection, Encoding Block Codes, Decoding of Block Codes, Single Parity Check bit Code, Repeated Codes, Hadamard Code, Hamming Code, Cyclic Codes, Generator and Parity-Check Matrices of Cyclic Codes, Encoding and Decoding of Cyclic Codes, BCH codes, Reed-Solomon Code.

UNIT V

Convolutional Coding, Code Generation, Decoding Convolutional Code, the Code Tree, Decoding in the presence of Noise, State and Trellis Diagrams, The Viterbi Algorithm, Comparison of Error Rates in Coded and Uncoded Transmission, Turbo Codes, LDPC codes, Hard and Soft Decision Decoding.

Textbooks:

- 1. Thomas M.Cover, Joy A. Thomas, Elements of Information Theory, John Wiley & Sons, 2nd Edition, 2006.
- 2. Herbert Taub, Donald L Shilling, Goutam Saha, Principles of Communication Systems, 4th Edition, McGraw Hill, 2017.

References:

- 1. Shu Lin, Daniel J. Costello Jr., Error Control Coding, Pearson, Second Edition, 2013.
- 2. Simon Haykin, Communication Systems, John Wiley, 4th Edition, 2010.

Course Code	DETECTION AND ESTIMATION THEORY	L	T	P	C
23ECT13b	Professional Elective-I	3	0	0	3
Semester					V

Course Objectives:

- 1. To understand the impact of white Gaussian noise on the detection of signals.
- 2. To analyze the detection of deterministic signals and random signals.
- 3. To learn about the nonparametric detections.
- 4. To analyze estimation signal parameter and apply suitable estimation techniques.
- 5. To understand the signal estimation in Discrete-Time techniques.

Course Outcomes: At the end of this course, the students will be able to

- 1. Understand the impact of white Gaussian noise on the detection of signals.
- 2. Analyze the detection of deterministic signals and random signals.
- 3. Learn about the nonparametric detections.
- 4. Analyze estimation signal parameter and apply suitable estimation techniques.
- 5. Understand the signal estimation in Discrete-Time techniques

UNIT 1

Statistical Decision Theory:Review of Gaussian variables and processes; problem formulation and objective of signal detection and signal parameter estimation in discrete-time domain. Bayesian, minimax, and Neyman-Pearson decision rules, likelihood ratio, receiver operating characteristics, composite hypothesis testing, locally optimum tests, detector comparison techniques, asymptotic relative efficiency.

UNIT 2

Detection of Deterministic Signals: Matched filter detector and its performance; generalized matched filter; detection of sinusoid with unknown amplitude, phase, frequency and arrival time, linear model. **Detection of Random Signals:** Estimator-correlator, linear model, general Gaussian detection, detection of Gaussian random signal with unknown parameters, weak signal detection

UNIT 3

Nonparametric Detection: Detection in the absence of complete statistical description of observations, sign detector, Wilcoxon detector, detectors based on quantized observations, robustness of detectors.

UNIT 4

Estimation of Signal Parameters: Minimum variance unbiased estimation, Fisher information matrix, Cramer-Rao bound, sufficient statistics, minimum statistics, complete statistics; linear models; best linear unbiased estimation; maximum likelihood estimation, invariance principle; estimation efficiency; Bayesian estimation: philosophy, nuisance parameters, risk functions, minimum mean square error estimation, maximum a posteriori estimation.

UNIT 5

Signal Estimation in Discrete-Time: Linear Bayesian estimation, Weiner filtering, dynamical signal model, discrete Kalman filtering.

Text books:

- 1. H. L. Van Trees, "Detection, Estimation and Modulation Theory: Part I, II, and III", John Wiley, NY, 1968
- 2. H. V. Poor, "An Introduction to Signal Detection and Estimation", Springer, 2/e, 1998.

Reference books:

- 1. S. M. Kay, "Fundamentals of Statistical Signal Processing: Estimation Theory", Prentice Hall PTR, 1993.
- 2. S. M. Kay, "Fundamentals of Statistical Signal Processing: Detection Theory", Prentice Hall PTR, 1998.

Course Code	ANALOG & DIGITAL IC APPLICATIONS LAB	L	T	P	С
23ECP06		0	0	3	1.5
Semester				1	V

Course Objectives:

- 1. To design an Inverting and Non-inverting Amplifier using an Op Amp.
- 2. To demonstrate the Linear and Non-Linear Applications using IC 741.
- 3. To design Astable and Monostable Multivibrator using timer ICs.
- 4. To analyse the DAC and ADC converter.
- 5. To design Counters and Registers using digital ICs.

Course Outcomes: At the end of this course, the students will be able to

- 1. Design an Inverting and Non-inverting Amplifier using an Op Amp.
- 2. Demonstrate the Linear and Non-Linear Applications using IC 741.
- 3. Design Astable and Monostable Multivibrator using timer ICs.
- 4. Analyse the DAC and ADC converter.
- 5. Design Counters and Registers using digital ICs.

List of Experiments: (At least 8 Linear and 4 Digital IC experiments shall be performed).

- 1. Design an Inverting and Non-inverting Amplifier using Op Amp and calculate gain.
- 2. Design Adder and Subtractor using Op Amp and verify addition and subtraction process.
- 3. Design a Comparator using Op Amp and draw the comparison results of A=B, A>B, A<B
- 4. Design a Integrator and Differentiator Circuits using IC741 and derive the required condition practically.
- 5. Design a Active LPF, HPF cutoff frequency of 2 KHZ and find the roll off of it.
- 6. Design a Circuit using IC741 to generate sine/square/triangular wave with period of 1KHZ and draw the output waveform.
- 7. Construct Mono-stable Multivibrator using IC555 and draw its output waveform.
- 8. Construct AstableMultivibrator using IC555 and draw its output waveform and also find its duty cycle.
- 9. Design a Schmitt Trigger Circuit and find its LTP and UTP.
- 10. Design Voltage Regulator using IC723, IC 7805/7809/7912 and find its load regulation factor.
- 11. Design R-2R ladder DAC and find its resolution and write a truth table with respective voltages.
- 12. Design Parallel comparator type/ counter type/ successive approximation ADC and find its efficiency.
- 13. Design a 8x1 multiplexer using digital ICs.
- 14. Design a 4-bit Adder/Subtractor using digital ICs
- 15. Design a Decade counter and verify its truth table and draw respective waveforms.
- 16. Design a Up/down counter using IC74163 and draw read/write waveforms.
- 17. Design a Universal shift register using IC 74194/195 and verify its shifting operation.
- 18. Design a 8x3 encoder/3x8 decoder and verify its truth table.
- 19. Verification of all logic gates.

Course Code	MICROPROCESSORS AND	L	T	P	C
23ECP07	MICROCONTROLLERS LAB	0	0	3	1.5
Semester					V

Course Objectives:

- 1. To become skilled in 8086 Assembly Language programming.
- 2. To understand the detailed software and hardware structure of the microprocessor.
- 3. Train their practical knowledge through laboratory experiments.
- 4. To understand and learn 8051 Microcontroller.
- 5. To acquire knowledge on microprocessors and microcontrollers, interfacing various peripherals, and configuring.

Course Outcomes: At the end of this course, the students will be able to

- 1. Formulate a program and implement algorithms using Assembly language.
- 2. Describe an Assembly language program for the 8086 Microprocessor.
- 3. Develop programs for different applications in the 8086 Microprocessor.
- 4. Interface peripheral devices with 8086 and 8051.
- 5. Use an Assembly/Embedded C programming approach for solving real-world problems.

List of Experiments: (Any TEN of the experiments are to be conducted)

- 1. **Programs for 16 Bit Arithmetic Operations** (Using various addressing modes)
- a) Write an ALP to Perform Addition and Subtraction of Multi precision numbers.
- b) Write an ALP to Perform Multiplication and division of signed and unsigned Hexadecimal numbers.
- c) Write an ALP to find square, cube and factorial of a given number.

2. Programs Involving Bit Manipulation Instructions

- a) Write an ALP to find the given data is positive or negative.
- b) Write an ALP to find the given data is odd or even.
- c) Write an ALP to find Logical ones and zeros in a given data.

3. Programs on Arrays for 8086

- a) Write an ALP to find Addition/subtraction of N no_s.
- b) Write an ALP for finding largest/smallest no.
- c) Write an ALP to sort given array in Ascending/descending order.

4. Programs on String Manipulations for 8086

- a) Write an ALP to find String length.
- b) Write an ALP for Displaying the given String.
- c) Write an ALP for Comparing two Strings.
- d) Write an ALP to reverse String and Checking for palindrome.

5. Programs for Digital Clock Design Using 8086

- a) Write an ALP for Designing clock using INT 21H Interrupt.
- b) Write an ALP for Designing clock using DOS Interrupt Functions.
- c) Write an ALP for Designing clock by reading system time.

6. Interfacing Stepper Motor with 8086

- a) Write an ALP to 8086 processor to Interface a stepper motor and operate it in clockwise by choosing variable step-size.
- b) Write an ALP to 8086 processor to Interface a stepper motor and operate it in Anti-clockwise by choosing variable step-size.

7. Interfacing ADC/DAC with 8086

- a) Write an ALP to 8086 processor to Interface ADC.
- b) Write an ALP to 8086 processor to Interface DAC and generate Square Wave/Triangular Wave/Stepsignal.

8. Communication between Two Microprocessors

- a) Write an ALP to have Parallel communication between two microprocessors using 8255
- b) Write an ALP to have Serial communication between two microprocessor kits using 8251.

9. Programs using Arithmetic and Logical Instructions for 8051

- a) Write an ALP to 8051 Microcontroller to perform Arithmetic operations like addition, subtraction,
- b) Multiplication and Division.
- c) Write an ALP to 8051 Microcontroller to perform Logical operations like AND, OR and XOR.
- d) Programs related to Register Banks.

10. Programs to Verify Timers/Counters of 8051

- a) Write a program to create a delay of 25msec using Timer0 in mode 1 and blink all the Pins of P0.
- b) Write a program to create a delay of 50 µsec using Timer1 in mode 0 and blink all the Pins of P2.
- c) Write a program to create a delay of 75msec using counter0 in mode 2 and blink all the Pins of P1.
- d) Write a program to create a delay of 80 µsec using counter1 in mode 1 and blink all the Pins of P3.

11. UART Operation in 8051

- a) Write a program to transfer a character serially with a baud rate of 9600 using UART.
- b) Write a program to transfer a character serially with a baud rate of 4800 using UART.
- c) Write a program to transfer a character serially with a baud rate of 2400 using UART.

12. Interfacing LCD with 8051

- a) Develop and execute the program to interface 16*2 LCD to 8051.
- b) Develop and execute the program to interface LCD to 8051 in 4-bit or 8-bit mode.

Reference Books:

- 2. Kenneth.J.Ayala. The 8051 microcontroller, 3rd edition, Cengage learning, 2010.
- 3. Advanced microprocessors and peripherals-A.K ray and K.M.Bhurchandani, TMH, 2nd edition 2006.

The 8051 Microcontroller and Embedded Systems: Using Assembly and C by Muhammad AliMazidi, Janice GillispieMazidi, Second Edition.

Course Code	PCB DESIGN AND PROTOTYPE DEVELOPMENT (Skill oriented course -III)	L	Т	P	С
23ECP08		0	1	2	2
Semester			7	V	

Course Objectives:

- 1. Identifying Electronic Components Symbols & Footprints.
- 2. To analyse the capability to produce PCBs of their circuit.
- 3. To effectively use the design rules & interfacing between schematic & PCB.

Course Outcomes: At the end of this course, the students will be able to

- 1. Students can design a schematic of their circuit.
- 2. Students can design PCB layout of their design.
- 3. Detailed description and practical of PCB designing.

UNITI

Fundamental of basic electronics: Component identification, Component symbols & their footprints, understand schematic, Creating new PCB, Browsing footprints libraries, Setting up the PCB layers, Design rule checking, Track width selection, Component selection, Routing and completion of the design

UNIT II

Introduction to PCB: Definition and Need/Relevance of PCB, Background and History of PCB, Types of PCB, Classes of PCB Design, Terminology in PCB Design, Different Electronic design automation (EDA)tools and comparison.

UNIT III

2. Regulator circuit using 7805

PCB Design Process: PCB Design Flow, Placement and routing, Steps involved in layout design, Artwork generation Methods - manual and CAD, General design factors for digital and analogue circuits, Layout and Artwork making for Single-side, double-side and Multilayer Boards, Design for manufacturability, Design-specification standards

Practice Exercises: Any twelve experiments are to be done 1. Practice following PCB Design steps
☐ Schematic Design: Familiarization of the Schematic Editor, Schematiccreation, Annotation, Netlist generation.
☐ Layout Design: Familiarization of Footprint Editor, Mapping of components, Creation of PCB layout Schematic.
• Create new schematic components.
☐ Create new component footprints.

- 3. Inverting Amplifier or Summing Amplifier using op-amp
- 4. Full-wave Rectifier
- 5. Astable multivibrator using IC555
- 6. Monostable multivibrator using IC555
- 7. RCPhase-shifter oscillator using transistor.
- 8. Wein-bridge Oscillator using op- amp
- 9. Full-Adder using half-adders.
- 10. 4-bit binary /MOD N counter using D-Flip flops.
- 11. One open-ended (analog/ digital/mixed circuit) experiments of similar nature and magnitude to the above are to be assigned by the teacher

(Student is expected to solve and execute/simulate independently).

- 12. Design an 8051 Development board having Power section consisting of IC7805, capacitor, resistor, headers, LED.
- 13. Design an 8051 Development board having Serial communication section consisting of MAX 232, Capacitors, DB9connector, Jumper, LEDs
- 14. Design an 8051 Development board having Reset & Input/output sections consisting of 89C51 Microcontroller, Electrolytic Capacitor, Resistor, Jumper, Crystal Oscillator, Capacitors
- 15. Fabricate a single-sided PCB, mount the components and assemble them in a cabinet for any one of the circuits mentioned in the above exercises.

References:

- 1. Jon Varteresian, Fabricating Printed Circuit Boards, z, 2002
- 2. R. Tummala, Fundamentals of Microsystems Packaging, McGraw-Hill 2001
- 3. C. Robertson. PCB Designer's Reference. Prentice Hall, 2003
- 4. Open-source EDA Tool KiCad Tutorial: http://kicad-pcb.org/help/tutorials/ 13. PCB Fabrication user guide page:

http://www.wikihow.com/Create-Printed-Circuit-Boards

http://www.siongboon.com/projects/2005-09-07_home_pcb_fabrication/

http://reprap.org/wiki/MakePCBInstructions#Making_PCBs_yourself

PCB Fabrication at home(video): https://www.youtube.com/watch?v=mv7Y0A9YeUc, https://www.youtube.com/watch?v=imQTCW1yWkg

DEPARTMENT OF ECE/EEE/AI/CSE/DS/CIVIL/CS/ME

Course Code	TINKERING LAB	L	T	P	C
23ECP09		0	0	2	1
Semester				7	7

Course Objectives:

- 1. Encourage Innovation and Creativity
- 2. Provide Hands-on Learning and Impart Skill Development
- 3. Foster Collaboration and Teamwork
- 4. Enable Interdisciplinary Learning, Prepare for Industry and Entrepreneurship
- 5. Impart Problem-Solving mind-set

Course Outcomes: At the end of this course, the students will be able to

1. The students will be able to experiment, innovate, and solve real-world challenges.

List of experiments:

- 1) Make your own parallel and series circuits using breadboard for any application of your choice.
- 2) Design and 3D print a Walking Robot
- 3) Design and 3D Print a Rocket.
- 4) Temperature & Humidity Monitoring System (DHT11 + LCD)
- 5) Water Level Detection and Alert System
- 6) Automatic Plant Watering System
- 7) Bluetooth-Based Door Lock System
- 8) Smart Dustbin Using Ultrasonic Sensor
- 9) Fire Detection and Alarm System
- 10) RFID-Based Attendance System
- 11) Voice-Controlled Devices via Google Assistant
- 12) Heart Rate Monitoring Using Pulse Sensor
- 13) Soil Moisture-Based Irrigation
- 14) Smart Helmet for Accident Detection
- 15) Milk Adulteration Detection System
- 16) Water Purification via Activated Carbon
- 17) Solar Dehydrator for Food Drying
- 18) Temperature-Controlled Chemical Reactor
- 19) Ethanol Mini-Plant Using Biomass
- 20) Smart Fluid Flow Control (Solenoid + pH Sensor)
- 21) Portable Water Quality Tester
- 22) AI Crop Disease Detection

- 23) AI-based Smart Irrigation
- 24) ECG Signal Acquisition and Plotting
- 25) AI-Powered Traffic Flow Prediction
- 26) Smart Grid Simulation with Load Monitoring
- 27) Smart Campus Indoor Navigator
- 28) Weather Station Prototype
- 29) Firefighting Robot with Sensor Guidance
- 30) Facial Recognition Dustbin
- 31) Barcode-Based Lab Inventory System
- 32) Growth Chamber for Plants
- 33) Biomedical Waste Alert System
- 34) Soil Classification with AI
- 35) Smart Railway Gate
- 36) Smart Bin Locator via GPS and Load Sensors
- 37) Algae-Based Water Purifier
- 38) Contactless Attendance via Face Recognition

Note: The students can also design and implement their own ideas, apart from the list of experiments mentioned above.

Note: A minimum of 8 to 10 experiments must be completed by the students.

Course Code	INTRODUCTION TO QUANTUM	L	T	P	C
23CST12	TECHNOLOGIES AND APPLICATIONS	3	0	0	3
Semester				1	V

Course Objectives (COBJ):

- Introduce fundamental quantum concepts like superposition and entanglement.
- Understand theoretical structure of qubits and quantum information.
- Explore conceptual challenges in building quantum computers.
- Explain principles of quantum communication and computing.
- Examine real-world applications and the future of quantum technologies.

Course Outcomes (CO):

- Explain core quantum principles in a non-mathematical manner.
- Compare classical and quantum information systems.
- Identify theoretical issues in building quantum computers.
- Discuss quantum communication and computing concepts.
- Recognize applications, industry trends, and career paths in quantum technology.

Unit 1: Introduction to Quantum Theory and Technologies

The transition from classical to quantum physics, Fundamental principles explained conceptually: Superposition, Entanglement, Uncertainty Principle, Wave-particle duality, Classical vs Quantum mechanics – theoretical comparison, Quantum states and measurement: nature of observation, Overview of quantum systems: electrons, photons, atoms, The concept of quantization: discrete energy levels, Why quantum? Strategic, scientific, and technological significance, A snapshot of quantum technologies: Computing, Communication, and Sensing, National and global quantum missions: India's Quantum Mission, EU, USA, China

Unit 2: Theoretical Structure of Quantum Information Systems

What is a qubit? Conceptual understanding using spin and polarization, Comparison: classical bits vs quantum bits, Quantum systems: trapped ions, superconducting circuits, photons (non-engineering view),Quantum coherence and decoherence – intuitive explanation, Theoretical concepts: Hilbert spaces, quantum states, operators – only interpreted in abstract,The role of entanglement and non-locality in systems, Quantum information vs classical information: principles and differences,Philosophical implications: randomness, determinism, and observer role

Unit 3: Building a Quantum Computer – Theoretical Challenges and Requirements

What is required to build a quantum computer (conceptual overview)?, Fragility of quantum systems: decoherence, noise, and control, Conditions for a functional quantum system: Isolation, Error management, Scalability, Stability, Theoretical barriers:

Why maintaining entanglement is difficult, Error correction as a theoretical necessity, Quantum hardware platforms (brief conceptual comparison), Superconducting circuits, Trapped ions, Photonics, Visionvs reality: what's working and what remains elusive, The role of quantum software in managing theoretical complexities

Unit 4: Quantum Communication and Computing – Theoretical Perspective

Quantum vs Classical Information, Basics of Quantum Communication, Quantum Key Distribution (QKD),Role of Entanglement in Communication,The Idea of the Quantum Internet – Secure Global Networking,Introduction to Quantum Computing,Quantum Parallelism (Many States at Once),Classical vs Quantum Gates, Challenges: Decoherence and Error Correction,Real-World Importance and Future Potential

Unit 5: Applications, Use Cases, and the Quantum Future

Real-world application domains: Healthcare (drug discovery), Material science, Logistics and optimization, Quantum sensing and precision timing, Industrial case studies: IBM, Google, Microsoft, PsiQuantum, Ethical, societal, and policy considerations, Challenges to adoption: cost, skills, standardization, Emerging careers in quantum: roles, skillsets, and preparation pathways, Educational and research landscape – India's opportunity in the global quantum race

Textbooks:

- 1. Michael A. Nielsen, Isaac L. Chuang, *Quantum Computation and Quantum Information*, Cambridge University Press, 10th Anniversary Edition, 2010.
- 2. Eleanor Rieffel and Wolfgang Polak, *Quantum Computing: A Gentle Introduction*, MIT Press, 2011.
- 3. Chris Bernhardt, Quantum Computing for Everyone, MIT Press, 2019.

Reference Books:

- 1. David McMahon, Quantum Computing Explained, Wiley, 2008.
- 2. Phillip Kaye, Raymond Laflamme, Michele Mosca, *An Introduction to Quantum Computing*, Oxford University Press, 2007.
- 3. Scott Aaronson, Quantum Computing Since Democritus, Cambridge University Press, 2013.
- 4. **Alastair I.M. Rae**, *Quantum Physics: A Beginner's Guide*, Oneworld Publications, Revised Edition, 2005.
- 5. **Eleanor G. Rieffel, Wolfgang H. Polak**, *Quantum Computing: A Gentle Introduction*, MIT Press, 2011.
- 6. **Leonard Susskind, Art Friedman**, *Quantum Mechanics: The Theoretical Minimum*, Basic Books, 2014.
- 7. **Bruce Rosenblum, Fred Kuttner**, *Quantum Enigma: Physics Encounters Consciousness*, Oxford University Press, 2nd Edition, 2011.
- 8. **GiulianoBenenti, GiulioCasati, GiulianoStrini**, *Principles of Quantum Computation and Information*, *Volume I: Basic Concepts*, World Scientific Publishing, 2004.
- 9. **K.B.** Whaley et al., Quantum Technologies and Industrial Applications: European Roadmap and Strategy Document, Quantum Flagship, European Commission, 2020.
- 10. **Department of Science & Technology (DST), Government of India**, National Mission on Quantum Technologies & Applications Official Reports and Whitepapers, MeitY/DST Publications, 2020 onward.

Online Learning Resources:

- IBM Quantum Experience and Qiskit Tutorials
- Coursera Quantum Mechanics and Quantum Computation by UC Berkeley
- edX The Quantum Internet and Quantum Computers
- YouTube Quantum Computing for the Determined by Michael Nielsen
- Qiskit Textbook IBM Quantum

Course Code	GREEN BUILDINGS	L	T	P	C
23CET12	Open Elective-I	3	0	0	3
	Semester			7	J

Course Objectives: The objectives of this course are to make the student:

- 1. To understand the fundamental concepts of green buildings, their necessity, and sustainable features.
 - 2. To analyze green building concepts, rating systems, and their benefits in India.
- 3. **To apply** green building design principles, energy efficiency measures, and renewable energy sources.
- 4. To evaluate air conditioning systems, HVAC designs, and energy modeling for sustainable buildings.
- 5. **To assess** material conservation strategies, waste management, and indoor environmental quality in green buildings.

Course Outcomes (COs) Upon successful completion of the course, students will be able to:

- 1. **Understand** the importance of green buildings, their necessity, and sustainable features.
- 2. **Analyze** various green building practices, rating systems, and their impact on environmental sustainability.
- 3. **Apply** principles of green building design to enhance energy efficiency and incorporate renewable energy sources.
- 4. **Evaluate** HVAC systems, energy-efficient air conditioning techniques, and their role in sustainable building design.
- 5. **Assess** material conservation techniques, waste reduction strategies, and indoor air quality management in green buildings.

UNIT-I

Introduction to Green Building– Necessity of Green Buildings, Benefits of Green Buildings, Green Building Materials and Equipment in India, Key Requisites for Constructing A Green Building, Important Sustainable Features for Green Buildings.

UNIT-II

Green Building Concepts and Practices—Indian Green Building Council, Green Building Movement in India, Benefits Experienced in Green Buildings, Launch of Green Building Rating Systems, Residential Sector, Market Transformation; Green Building Opportunities and Benefits: Opportunities of Green Buildings, Green Building Features, Material and Resources, Water Efficiency, Optimum Energy Efficiency, Typical Energy-Saving Approaches in Buildings, LEED India Rating System, and Energy Efficiency.

UNIT - III

Green Building Design— Introduction, Reduction in Energy Demand, Onsite Sources and Sinks, Maximizing System Efficiency, Steps to Reduce Energy Demand and Use Onsite Sources and Sinks, Use of Renewable Energy Sources, Eco-Friendly Captive Power Generation for Factories, Building Requirements.

UNIT - IV

Air Conditioning— Introduction, CII Godrej Green Business Centre, Design Philosophy, Design Interventions, Energy Modeling, HVAC System Design, Chiller Selection, Pump Selection, Selection of Cooling towers, Selection of Air Handling Units, Pre-Cooling of Fresh Air, Interior Lighting Systems, Key Features of The Building, Eco-Friendly Captive Power Generation for Factories, Building Requirements.

UNIT - V

Material Conservation— Handling of Non-Process Waste, Waste Reduction During Construction, Materials With Recycled Content, Local Materials, Material Reuse, Certified Wood, Rapidly Renewable Building Materials and Furniture. Indoor Environment Quality and Occupational Health—Air Conditioning, Indoor Air Quality, Sick Building Syndrome, tobacco Smoke.

TEXT BOOKS

- 1. Handbook on Green Practices published by Indian Society of Heating Refrigerating and Air conditioning Engineers, 2009.
- 2. Green Building Hand Book by tom woolley and Sam kimings, 2009.

REFERENCE BOOKS

- 1. Complete Guide to Green Buildings by Trish riley
- 2. Standard for the design for High Performance Green Buildings by Kent Peterson, 2009
- 3. Energy Conservation Building Code –ECBC-2020, published by BEE

ONLINE LEARNING RESOURCES

https://archive.nptel.ac.in/courses/105/102/105102195/

Course Code	CONSTRUCTION TECHNOLOGY AND	L	T	P	С
23CET13	MANAGEMENT	2	0	0	2
	Open Elective-I	3	U	U	3
	Semester			7	V

Course Objectives: The objectives of this course are to make the student :

- 1. To understand project management fundamentals, organizational structures, and leadership principles in construction.
- 2. To analyze manpower planning, equipment management, and cost estimation in civil engineering projects.
- 3. To apply planning, scheduling, and project management techniques such as CPM and PERT.
- 4. To evaluate various contract types, contract formation, and legal aspectsin construction management.
- 5. To assess safety management practices, accident prevention strategies, and quality management systems in construction.

Course Outcomes (COs): Upon successful completion of the course, students will be able to:

- 1. Understand (Cos) project management fundamentals, organizational structures, and leadership principles in construction.
- 2. Analyze manpower planning, equipment management, and cost estimation in civil engineering projects.
- 3. Apply planning, scheduling, and project management techniques such as CPM and PERT.
- 4. Evaluate various contract types, contract formation, and legal aspectsin construction management.
- 5. Assess safety management practices, accident prevention strategies, and quality management systems in construction.

UNIT-I

Introduction: Project forms, Management Objectives and Functions; Organizational Chart of A Construction Company; Manager's Duties and Responsibilities; Public Relations; Leadership and Team - Work; Ethics, Morale, Delegation and Accountability.

UNIT-II

Man and Machine: Man-Power Planning, Training, Recruitment, Motivation, Welfare Measures and Safety Laws; Machinery for Civil Engineering., Earth Movers and Hauling Costs, Factors Affecting Purchase, Rent, and Lease of Equipment, and Cost Benefit Estimation.

UNIT - III

Planning, Scheduling and Project Management: Planning Stages, Construction Schedules and Project Specification, Monitoring and Evaluation; Bar-Chart, CPM, PERT, Network- formulation and Time Computation.

UNIT - IV

Contracts: Types of Contracts, formation of Contract – Contract Conditions – Contract forLabour, Material, Design, Construction – Drafting of Contract Documents Based On IBRD/ MORTH Standard Bidding Documents – Construction Contracts – Contract Problems – Arbitration and Legal

Requirements Computer Applications in Construction Management: Software for Project Planning, Scheduling and Control.

UNIT - V

Safety Management – Implementation and Application of QMS in Safety Programs, ISO 9000 Series, Accident Theories, Cost of Accidents, Problem Areas in Construction Safety, Fall Protection, Incentives, Zero Accident Concepts, Planning for Safety, Occupational Health and Ergonomics.

TEXT BOOKS

- 1. Construction Project Management, SK. Sears, GA. Sears, RH. Clough, John Wiley and Sons, 6th Edition, 2016.
- 2. Construction Project Scheduling and Control by Saleh Mubarak, 4th Edition, 2019
- 3. Pandey, I.M (2021) Financial Management 12th edition. Pearson India Education Services Pvt. Ltd.

REFERENCE BOOKS

- 1. Brien, J.O. and Plotnick, F.L., CPMin Construction Management, Mcgraw Hill, 2010.
- 2. Punmia, B.C., and Khandelwal, K.K., Project Planning and control with PERT and CPM, Laxmi Publications, 2002.
- 3. Construction Methods and Management: Pearson New International Edition 8 th Edition Stephens Nunnally.
- 4. Rhoden, M and Cato B, Construction Management and Organisational Behaviour, Wiley-Blackwell, 2016.

ONLINE LEARNING RESOURCES

https://archive.nptel.ac.in/courses/105/104/105104161/https://archive.nptel.ac.in/courses/105/103/105103093/

Course Code	ELECTRICAL SAFETY PRACTICES AND	L	T	P	C
23EET13	STANDARDS Open Elective-I	3	0	0	3
	Semester				V

Course Outcomes:

CO1: Understanding the Fundamentals of Electrical Safety -L2

CO2: Identifying and Applying Safety Components -L3

CO3: Analyzing Grounding Practices and Electrical Bonding

CO4: Applying Safety Practices in Electrical Installations and Environments- L4

CO5: Evaluating Electrical Safety Standards and Regulatory Compliance -L5

UNIT I Introduction To Electrical Safety:

Fundamentals of Electrical safety-Electric Shock- physiological effects of electric current - Safety requirements –Hazards of electricity- Arc - Blast- Causes for electrical failure.

UNIT II Safety Components:

Introduction to conductors and insulators- voltage classification -safety against over voltages- safety against static electricity-Electrical safety equipment's - Fire extinguishers for electrical safety.

UNIT III Grounding:

General requirements for grounding and bonding- Definitions- System grounding-Equipment grounding - The Earth - Earthing practices- Determining safe approach distance-Determining arc hazard category.

UNIT IV Safety Practices:

General first aid- Safety in handling hand held electrical appliances tools- Electrical safety in train stations-swimming pools, external lighting installations, medical locations-Case studies.

UNIT V Standards For Electrical Safety:

Electricity Acts- Rules & regulations- Electrical standards-NFPA 70 E-OSHA standards-IEEE standards-National Electrical Code 2005 – National Electric Safety code NESC-Statutory requirements from electrical inspectorate

TEXT BOOKS:

1. Massimo A.G.Mitolo, —Electrical Safety of Low-Voltage Systems, McGraw Hill, USA,

REFERENCES:

- 1. Kenneth G.Mastrullo, Ray A. Jones, —The Electrical Safety Program Bookl, Jones and Bartlett Publishers, London, 2nd Edition, 2011.
- 2. Palmer Hickman, —Electrical Safety-Related Work Practices, Jones & Bartlett Publishers, London, 2009.
- 3. Fordham Cooper, W., —Electrical Safety Engineering, Butterworth and Company, London, 1986.
- 4. John Cadick, Mary Capelli-Schellpfeffer, Dennis K. Neitzel, —Electrical Safety Hand book, McGraw-Hill, New York, USA, 4th edition, 2012.

Course Code	Sustainable Energy Technologies	L	T	P	C
23MET14	Open Elective-I	3	0	0	3
	Semester			7	V

Course Objectives: The objectives of this course are to make the student:

- 1 To demonstrate the importance the impact of solar radiation, solar PV modules
- 2. To understand the principles of storage in PV systems
- 3. To discuss solar energy storage systems and their applications.
- 4. To get knowledge in wind energy and bio-mass
- 5. To gain insights in geothermal energy, ocean energy and fuel cells.

Course Outcomes (COs): Upon successful completion of the course, students will be able to:

- 1. Illustrate the importance of solar radiation and solar PV modules. L1,L2
- 2. Discuss the storage methods in PV systems. L2,L3
- 3. Explain the solar energy storage for different applications. L2,L3
- 4. Understand the principles of wind energy, and bio-mass energy. L2,L3
- 5. Attain knowledge in geothermal energy, ocean energy and fuel cells. L1,L2,L3,L4

UNIT-I

SOLAR RADIATION: Role and potential of new and renewable sources, the solar energy option, Environmental impact of solar power, structure of the sun, the solar constant, sun-earth relationships, coordinate systems and coordinates of the sun, extraterrestrial and terrestrial solar radiation, solar radiation on titled surface, instruments for measuring solar radiation and sun shine, solar radiation data, numerical problems.

SOLAR PV MODULES AND PV SYSTEMS: PV Module Circuit Design, Module Structure, Packing Density, Interconnections, Mismatch and Temperature Effects, Electrical and Mechanical Insulation, Lifetime of PV Modules, Degradation and Failure, PV Module Parameters, Efficiency of PV Module, Solar PV Systems-Design of Off Grid Solar Power Plant. Installation and Maintenance.

UNIT-II

STORAGE IN PV SYSTEMS: Battery Operation, Types of Batteries, Battery Parameters, Application and Selection of Batteries for Solar PV System, Battery Maintenance and Measurements, Battery Installation for PV System.

UNIT - III

SOLAR ENERGY COLLECTION: Flat plate and concentrating collectors, classification of concentrating collectors, orientation.

SOLAR ENERGY STORAGE AND APPLICATIONS: Different methods, sensible, latent heat and stratified storage, solar ponds, solar applications- solar heating/cooling technique, solar distillation and drying, solar cookers, central power tower concept and solar chimney.

UNIT - IV

WIND ENERGY: Sources and potentials, horizontal and vertical axis windmills, performance characteristics, betz criteria, types of winds, wind data measurement.

BIO-MASS: Principles of bio-conversion, anaerobic/aerobic digestion, types of bio-gas digesters, gas yield, utilization for cooking, bio fuels, I.C. engine operation and economic aspects.

UNIT - V

GEOTHERMAL ENERGY: Origin, Applications, Types of Geothermal Resources, Relative Merits **OCEAN ENERGY:** Ocean Thermal Energy; Open Cycle & Closed Cycle OTEC Plants, Environmental Impacts, Challenges

FUEL CELLS: Introduction, Applications, Classification, Different Types of Fuel Cells Such as Phosphoric Acid Fuel Cell, Alkaline Fuel Cell, PEM Fuel Cell, MC Fuel Cell.

Text Books: 1. Solar Energy – Principles of Thermal Collection and Storage/Sukhatme S.P. and J.K.Nayak/TMH 2. Non-Conventional Energy Resources- Khan B.H/ Tata McGraw Hill, New Delhi, 2006

References: 1. Principles of Solar Engineering - D.Yogi Goswami, Frank Krieth& John F Kreider / Taylor & Francis 2. Non-Conventional Energy - Ashok V Desai /New Age International (P) Ltd 3. Renewable Energy Technologies -Ramesh & Kumar /Narosa 4. Non-conventional Energy Source- G.D Roy/Standard Publishers

Online Learning Resources:

https://nptel.ac.in/courses/112106318

https://youtube.com/playlist?list=PLyqSpQzTE6M-ZgdjYukayF6QevPv7WE-r&si=-mwIa2X-SuSiNy13

https://youtube.com/playlist?list=PLyqSpQzTE6M-ZgdjYukayF6QevPv7WE-r&si=Apfjx6oDfz1Rb_N3 https://youtu.be/zx04Kl8y4dE?si=VmOvp_OgqisILTAF

Course Code	JAVA PROGRAMMING	L	T	P	C
23CST25	Open Elective-I	3	0	0	3
	Semester				V

Course Objectives: The main objective of the course is to Identify Java language components and how they work together in applications

Learn the fundamentals of object-oriented programming in Java, including defining classes, invoking methods, using class libraries.

Learn how to extend Java classes with inheritance and dynamic binding and how to use exception handling in Java applications

Understand how to design applications with threads in Java

Understand how to use Java apisfor program development

Course Outcomes: After completion of the course, students will be able to

CO1: Analyze problems, design solutions using OOP principles, and implement them efficiently in Java.

CO2: Design and implement classes to model real-world entities, with a focus on attributes, behaviors, and relationships between objects

CO3: Demonstrate an understanding of inheritance hierarchies and polymorphic behaviour, including method overriding and dynamic method dispatch.

CO4: Apply Competence in handling exceptions and errors to write robust and fault-tolerant code. **CO5:** Perform file input/output operations, including reading from and writing to files using Java I/O classes, graphical user interface (GUI) programming using JavaFX.

Unit – I: Object Oriented Programming: Basic concepts, Principles, Program Structure in Java: Introduction, Writing Simple Java Programs, Elements or Tokens in Java Programs, Java Statements, Command Line Arguments, User Input to Programs, Escape Sequences Comments, Programming Style. Data Types, Variables, and Operators: Introduction, Data Types in Java, Declaration of Variables, Data Types, Type Casting, Scope of Variable Identifier, Literal Constants, Symbolic Constants, Formatted Output with printf() Method, Static Variables and Methods, Attribute Final,

Introduction to Operators, Precedence and Associativity of Operators, Assignment Operator (=), Basic Arithmetic Operators, Increment (++) and Decrement (- -) Operators, Ternary Operator, Relational Operators, Boolean Logical Operators, Bitwise Logical Operators.

Control Statements: Introduction, if Expression, Nested if Expressions, if—else Expressions, Ternary Operator?:, Switch Statement, Iteration Statements, while Expression, do—while Loop, for Loop, Nested for Loop, For—Each for Loop, Break Statement, Continue Statement.

Unit II:Classes and Objects: Introduction, Class Declaration and Modifiers, Class Members, Declaration of Class Objects, Assigning One Object to Another, Access Control for Class Members, Accessing Private Members of Class, Constructor Methods for Class, Overloaded Constructor Methods, Nested Classes, Final Class and Methods, Passing Arguments by Value and by Reference, Keyword this.

Methods: Introduction, Defining Methods, Overloaded Methods, Overloaded Constructor Methods, Class Objects as Parameters in Methods, Access Control, Recursive Methods, Nesting of Methods, Overriding Methods, Attributes Final and Static.

Unit III: Arrays:Introduction, Declaration and Initialization of Arrays, Storage of Array in Computer Memory, Accessing Elements of Arrays, Operations on Array Elements, Assigning Array to Another Array, Dynamic Change of Array Size, Sorting of Arrays, Search for Values in Arrays, Class Arrays, Two-dimensional Arrays, Arrays of Varying Lengths, Three-dimensional Arrays, Arrays as Vectors. Inheritance: Introduction, Process of Inheritance, Types of Inheritances, Universal Super ClassObject Class, Inhibiting Inheritance of Class Using Final, Access Control and Inheritance, Multilevel Inheritance, Application of Keyword Super, Constructor Method and Inheritance, Method Overriding, Dynamic Method Dispatch, Abstract Classes, Interfaces and Inheritance.

Interfaces: Introduction, Declaration of Interface, Implementation of Interface, Multiple Interfaces, Nested Interfaces, Inheritance of Interfaces, Default Methods in Interfaces, Static Methods in Interface, Functional Interfaces, Annotations.

Unit IV: Packages and Java Library: Introduction, Defining Package, Importing Packages and Classes into Programs, Path and Class Path, Access Control, Packages in Java SE, Java.lang Package and its Classes, Class Object, Enumeration, class Math, Wrapper Classes, Auto-boxing and Autounboxing, Java util Classes and Interfaces, Formatter Class, Random Class, Time Package, Class Instant (java.time.Instant), Formatting for Date/Time in Java, Temporal Adjusters Class, Temporal Adjusters Class.

Exception Handling: Introduction, Hierarchy of Standard Exception Classes, Keywords throws and throw, try, catch, and finally Blocks, Multiple Catch Clauses, Class Throwable, Unchecked Exceptions, Checked Exceptions.

Java I/O and File: Java I/O API, standard I/O streams, types, Byte streams, Character streams, Scanner class, Files in Java(Text Book 2)

Unit V: String Handling in Java: Introduction, Interface Char Sequence, Class String, Methods for Extracting Characters from Strings, Comparison, Modifying, Searching; Class String Buffer. Multithreaded Programming: Introduction, Need for Multiple Threads Multithreaded Programming for Multi-core Processor, Thread Class, Main Thread Creation of New Threads, Thread States, Thread Priority-Synchronization, Deadlock and Race Situations, Inter thread Communication - Suspending, Resuming, and Stopping of Threads. Java Database Connectivity: Introduction, JDBC Architecture, Installing MySQL and MySQL Connector/J, JDBC Environment Setup, Establishing JDBC Database Connections, ResultSet Interface

Java FX GUI: Java FX Scene Builder, Java FX App Window Structure, displaying text and image, event handling, laying out nodes in scene graph, mouse events (Text Book 3)

Learning Resources:

Textbooks:

- 1. JAVA one step ahead, Anitha Seth, B.L.Juneja, Oxford.
- 2. Joy with JAVA, Fundamentals of Object Oriented Programming, DebasisSamanta, MonalisaSarma, Cambridge, 2023.
- 3. JAVA 9 for Programmers, Paul Deitel, Harvey Deitel, 4th Edition, Pearson.

Reference Books:

- 1. The complete Reference Java, 11thedition, Herbert Schildt, TMH
- 2. Introduction to Java programming, 7th Edition, Y Daniel Liang, Pearson

Online Learning Resources:

- 1. https://nptel.ac.in/courses/106/105/106105191/
- 2. https://infyspringboard.onwingspan.com/web/en/app/toc/lex_auth_012880464547618816347 _shared/overview

Course Code	FUNDAMENTALS OF ARTIFICIAL	L	T	P	С
23AIT07	INTELLIGENCE Open Elective-I	3	0	0	3
Semester				7	V

Course Objectives:

To learn the distinction between optimal reasoning Vs. human like reasoning.

To understand the concepts of state space representation, exhaustive search, heuristic search together with the time and space complexities.

To learn different knowledge representation techniques.

To understand the applications of AI, namely game playing, theorem proving, and machine learning.

Course Outcomes:

After completion of the course, students will be able to

CO1: Understand AI agents and find solutions for different searching strategies.

CO2: Analyse game theorem and propositional logic.

CO3: Apply first order logic and understand knowledge representation.

CO4: Analyse different types of planning approaches.

CO5: Understand the uncertainty using probability concepts

UNIT - I

Introduction to AI - Intelligent Agents, Problem-Solving Agents,

Searching for Solutions - Breadth-first search, Depth-first search, Hill-climbing search, Simulated annealing search, Local Search in Continuous Spaces.

UNIT-II

Games - Optimal Decisions in Games, Alpha–Beta Pruning, Defining Constraint Satisfaction Problems, Constraint Propagation, Backtracking Search for CSPs, Knowledge-Based Agents, **Logic**- Propositional Logic, Propositional Theorem Proving: Inference and proofs, Proof by resolution, Horn clauses and definite clauses.

UNIT-III

First-Order Logic - Syntax and Semantics of First-Order Logic, Using First Order Logic, Knowledge Engineering in First-Order Logic. Inference in First-Order Logic: Propositional vs. First-Order Inference, Unification, Forward Chaining, Backward Chaining, Resolution.

Knowledge Representation: Ontological Engineering, Categories and Objects, Events.

UNIT-IV

Planning - Definition of Classical Planning, Algorithms for Planning with State Space Search, Planning Graphs, other Classical Planning Approaches, Analysis of Planning approaches. Hierarchical Planning.

UNIT-V

Probabilistic Reasoning:

Acting under Uncertainty, Basic Probability Notation Bayes' Rule and Its Use, Probabilistic Reasoning, Representing Knowledge in an Uncertain Domain, The Semantics of Bayesian Networks, Efficient Representation of Conditional Distributions, Approximate Inference in Bayesian Networks, Relational and First-Order Probability.

TEXT BOOK:

1. Artificial Intelligence: A Modern Approach, Third Edition, Stuart Russell and Peter Norvig, Pearson Education.

REFERENCE BOOKS:

- 1. Artificial Intelligence, 3rd Edn., E. Rich and K. Knight (TMH)
- 2. Artificial Intelligence, 3rd Edn., Patrick Henny Winston, Pearson Education.
- 3. Artificial Intelligence, Shivani Goel, Pearson Education.
- 4. Artificial Intelligence and Expert systems Patterson, Pearson Education.

Course Code	QUANTUM TECHNOLOGIES AND	L	T	P	C
23CST13	APPLICATIONS Open Elective-I	3	0	0	3
Semester				7	V

Course Objectives:

- To introduce the fundamentals of quantum mechanics relevant to quantum technologies.
- To explain key quantum phenomena and their role in enabling novel technologies.
- To explore applications in quantum computing, communication, and sensing.
- To encourage understanding of emerging quantum-based technologies and innovations.

Syllabus

UNIT I: Fundamentals of Quantum Mechanics (7 Hours)

- Classical vs Quantum Paradigm
- Postulates of Quantum Mechanics
- Wavefunction and Schrödinger Equation (Time-independent)
- Quantum states, Superposition, Qubits
- Measurement, Operators, and Observables
- Entanglement and Non-locality

UNIT II: Quantum Computing

- Qubits and Bloch Sphere
- Quantum Logic Gates: Pauli, Hadamard, CNOT, and Universal Gates
- Quantum Circuits
- Basic Algorithms: Deutsch-Jozsa. Gover's, Shor's (conceptual)
- Error Correction and Decoherence

UNIT III: Quantum Communication and Cryptography (7 Hours)

- Teleportation & No-Cloning
- BB84 Protocol
- Quantum Networks & Repeaters
- Classical vs Quantum Cryptography
- Challenges in Implementation

UNIT IV: Quantum Sensors and Metrology

- Quantum Sensing: Principles and Technologies
- Quantum-enhanced Measurements
- Atomic Clocks, Gravimeters
- Magnetometers, NV Centers
- Industrial Applications

UNIT V: Quantum Materials and Emerging Technologies

- Quantum Materials: Superconductors, Topological Insulators
- Quantum Devices: Qubits, Josephson Junctions
- National Quantum Missions (India, EU, USA, China)
- Quantum Careers and Industry Initiatives

Textbooks and References

Primary Textbooks:

- "Quantum Computation and Quantum Information" by Michael A. Nielsen and Isaac L. Chuang (Cambridge University Press)
- "Quantum Mechanics: The Theoretical Minimum" by Leonard Susskind and Art Friedman (Basic Books)

Supplementary Reading:

- "Quantum Computing for Everyone" by Chris Bernhardt (MIT Press)
- "Quantum Physics: A Beginner's Guide" by Alastair I.M. Rae
- "An Introduction to Quantum Computing" by Phillip Kaye, Raymond Laflamme, and Michele Mosca
- IBM Quantum Experience and Qiskit Documentation (https://qiskit.org/)

Course Outcomes

- Understand key quantum mechanical concepts and phenomena.
- Comprehend the structure and function of quantum algorithms and circuits.
- Explore applications in quantum communication and cryptography.
- Appreciate the role of quantum technologies in modern engineering systems.

Course Code	MATHEMATICS FOR MACHINE	L	T	P	С
23BST19	LEARNING AND AI Open Elective-I	3	0	0	3
Semester				7	V

Course Objectives:

To provide a strong mathematical foundation for understanding and developing AI/ML algorithms.

To enhance the ability to apply linear algebra, probability, and calculus in AI/ML models.

To equip students with optimization techniques and graph-based methods used in AI applications.

To develop critical problem-solving skills for analysing mathematical formulations in AI/ML.

Course Outcomes:

After successful completion of this course, the students should be able to:

CO1: Apply linear algebra concepts to ML techniques like PCA and regression. L3

CO2: Analyze probabilistic models and statistical methods for AI applications. L4

CO3: Implement optimization techniques for machine learning algorithms. L3

CO4: Utilize vector calculus and transformations in AI-based models. L3

CO5: Develop graph-based AI models using mathematical representations. L5

UNIT I: Linear Algebra for Machine Learning(08) Review of Vector spaces, basis, linear independence, Vector and matrix norms, Matrix factorization techniques, Eigenvalues, eigenvectors, diagonalization, Singular Value Decomposition (SVD) and Principal Component Analysis (PCA).

UNIT II: Probability and Statistics for AI(08) Probability distributions: Gaussian, Binomial, Poisson. Bayes' Theorem, Maximum Likelihood Estimation (MLE), and Maximum a Posteriori (MAP). Entropy and Kullback-Leibler (KL) Divergence in AI, Cross entropy loss, Markov chains.

UNIT III: Optimization Techniques for ML(08) Multivariable calculus: Gradients, Hessians, Jacobians. Constrained optimization: Lagrange multipliers and KKT conditions. Gradient Descent and its variants (Momentum, Adam) Newton's method, BFGS method.

UNIT IV: Vector Calculus & Transformations(08) Vector calculus: Gradient, divergence, curl. Fourier Transform & Laplace Transform in ML applications.

UNIT V: Graph Theory for AI(08) Graph representations: Adjacency matrices, Laplacian matrices. Bayesian Networks & Probabilistic Graphical Models. Introduction to Graph Neural Networks (GNNs).

Textbooks:

- 1. Mathematics for Machine Learning by Marc Peter Deisenroth, A. Aldo Faisal, Cheng Soon Ong, Cambridge University Press, 2020.
- 2. Pattern Recognition and Machine Learningby Christopher Bishop, Springer.

Reference Books:

- 1. Gilbert Strang, Linear Algebra and Its Applications, Cengage Learning, 2016.
- 2. Jonathan Gross, Jay Yellen, Graph Theory and Its Applications, CRC Press, 2018.

Web References:

- MIT- Mathematics for Machine Learning https://ocw.mit.edu
- Stanford CS229 Machine Learning Course https://cs229.stanford.edu/

DeepAI – Mathematical Foundations for AI https://deepai.org

Course Code	MATERIALS CHARACTERIZATION	L	T	P	C
23BST20	TECHNIQUES Open Elective-I	3	0	0	3
Semester				7	7

Course Objectives:

To provide exposure to different characterization techniques.

To explain the basic principles and analysis of different spectroscopic techniques.

To elucidate the working of Scanning electron microscope - Principle, limitations and applications.

To illustrate the working of the Transmission electron microscope (TEM) - SAED patterns and its applications.

To educate the uses of advanced electric and magnetic instruments for characterization.

Course Outcomes

CO1: Analyze the crystal structure and crystallite size by various methods . L1.L2,L3,L4

CO2: Analyze the morphology of the sample by using a Scanning Electron Microscope. L1,L2, L4

CO3: Analyze the morphology and crystal structure of the sample by using Transmission Electron Microscope . L1,L2,L3

CO4: Explain the principle and experimental arrangement of various spectroscopic techniques . L1,L2

CO5: Identify the construction and working principle of various Electrical & Magnetic Characterization technique . L1,L2

UNIT I Structure analysis by Powder X-Ray Diffraction

Introduction, Bragg's law of diffraction, Intensity of Diffracted beams, Factors affecting Diffraction, Intensities, Structure of polycrystalline Aggregates, Determination of crystal structure, Crystallite size by Scherer and Williamson-Hall (W-H) Methods, Small angle X-ray scattering (SAXS) (in brief).

UNIT II Microscopy technique -1 –Scanning Electron Microscopy (SEM) Introduction, Principle, Construction and working principle of Scanning Electron Microscopy, Specimen preparation, Different types of modes used (Secondary Electron and Backscatter Electron), Advantages, limitations and applications of SEM.

UNIT III Microscopy Technique -2 - Transmission Electron Microscopy (TEM)

Construction and Working principle, Resolving power and Magnification, Bright and dark fields, Diffraction and image formation, Specimen preparation, Selected Area Diffraction, Applications of Transmission Electron Microscopy, Difference between SEM and TEM, Advantage and Limitations of Transmission Electron Microscopy

UNIT IV Spectroscopy techniques 9H Principle, Experimental arrangement, Analysis and advantages of the spectroscopic techniques – (i) UV-Visible spectroscopy (ii) Raman Spectroscopy, (iii) Fourier Transform infrared (FTIR) spectroscopy, (iv) X-ray photoelectron spectroscopy (XPS).

UNIT V Electrical & Magnetic Characterization techniques Electrical Properties analysis techniques (DC conductivity, AC conductivity) Activation Energy, Effect of Magnetic field on the electrical properties (Hall Effect). Magnetization measurement by induction method, Vibrating sample Magnetometer (VSM) and SQUID.

Textbooks:

- 1. Material Characterization: Introduction to Microscopic and Spectroscopic Methods Yang Leng John Wiley & Sons (Asia) Pvt. Ltd. 2013.
- 2. Microstructural Characterization of Materials David Brandon, Wayne D Kalpan, John Wiley & Sons Ltd., 2008

Reference Books:

- 1. Fundamentals of Molecular Spectroscopy IV Ed. Colin Neville BanwellandElaine M. McCash, Tata McGraw-Hill, 2008.
- 2. Elements of X-ray diffraction Bernard Dennis Cullity& Stuart R Stocks, Prentice Hall , 2001 Science.
- 3. Materials Characterization: Introduction to Microscopic and Spectroscopic Methods Yang Leng John Wiley & Sons
- 4. Characterization of Materials 2nd Edition, 3 Volumes Kaufmann E N John Wiley (Bp)

NPTEL courses link:

- 1. https://nptel.ac.in/courses/115/103/115103030/
- 2. https://nptel.ac.in/content/syllabus_pdf/113106034.pdf
- 3. https://nptel.ac.in/noc/courses/noc19/SEM1/noc19-mm08/

Course Code	CHEMISTRY OF ENERGY SYSTEMS	L	T	P	С
23BST21	Open Elective-I	3	0	0	3
	Semester				V

Course Objectives:

- 1. To make the student understand basic electrochemical principles such as standard electrode potentials, emf and applications of electrochemical principles in the design of batteries.
- 2. To understand the basic concepts of processing and limitations of Fuel cells & their applications.
- 3. To impart knowledge to the students about fundamental concepts of photo chemical cells, reactions and applications
- 4. Necessasity of harnessing alternate energy resources such as solar energy and its basic concepts.
- 5. To impart knowledge to the students about fundamental concepts of hydrogen storage in different materials and liquification method.

Course Outcomes

CO1: Differentiate between Lead acid and Lithium ion batteries, Illustrate the Electrical double layer. L2, L3, L4

CO2: Describe the working Principle of Fuel cell; Explain the efficiency of the fuel cell. L1,L2, L4

CO3: Illustrate the photochemical cells, Identify the applications of photochemical reactions.

L1,L2, L3

CO4: Illustrate the Solar cells, Discuss about concentrated solar power L1,L2

CO5: Discuss the metal organic frame work, Illustrate the carbon and metal oxide porous structures L1,L2

UNIT-1: Electrochemical Systems: Galvanic cell, Nernst equation, standard electrode potential, application of EMF, electrical double layer, polarization, Batteries- Introduction ,Lead-acid ,Nickel-cadmium, Lithium ion batteries and their applications.

UNIT-2: Fuel Cells: Fuel cell- Introduction, Basic design of fuel cell, working principle, Classification of fuel cells, Polymer electrolyte membrane (PEM) fuel cells, Solid-oxide fuel cells (SOFC), Fuel cell efficiency and applications.

UNIT-3: Photo and Photo electrochemical Conversions: Photochemical cells Introduction and applications of photochemical reactions, specificity of photo electrochemical cell, advantage of photoelectron catalytic conversions and their applications.

UNIT-4: Solar Energy: Introduction and prospects, photovoltaic (PV) technology, concentrated solar power (CSP), Solar cells and applications.

UNIT-5: Hydrogen Storage: Hydrogen storage and delivery: State-of-the art, Established technologies, Chemical and Physical methods of hydrogen storage, Compressed gas storage, Liquid hydrogen storage, Other storage methods, Hydrogen storage in metal hydrides, metal organic frameworks (MOF), Metal oxide porous structures, hydrogel, and Organic hydrogen carriers.

Text Books

- 1. Physical Chemistry by Ira N. Levine, 7th Edition, McGraw-Hill Education, 2013, ISBN: 978007132121.
- 2. Essentials of Physical Chemistry by B.S. Bahl, G.D. Tuli, and ArunBahl, 28th Edition (or latest available), S. Chand Publishin, 2022, **ISBN**: 9789355011393.
- 3. *Inorganic Chemistry by* Gary L. Miessler, Paul J. Fischer, and Peter J. Atkins, 5th Edition Oxford University Press, 2011.

ReferenceBooks:

- 1. Fuel Cell Hand Book 7th Edition, by US Department of Energy (EG & G technical services And corporation)
- 2. Hand book of solar energy and applications by ArvindTiwari and Shya
- 3. Solar Energy: Fundamentals, Technology and Systems, Klaus Jäger, Olindo Isabella, Arno Smets, René van Swaaij, and MiroZeman, 1st Editio, Delft University of Technology, 2014.
- 4. Hydrogen Storage by Levine Kleban off, 1st Edition, CRC Press, 2012.

http://digimat.in/nptel/courses/video/103103206/L01.html http://acl.digimat.in/nptel/courses/video/103103206/L28.html

Course Code	ENGLISH FOR COMPETITIVE	L	T	P	C
23BST22	EXAMINATIONS Open Elective-I	3	0	0	3
	Semester				V

Course Objectives:

- 1. To enable the students to learn about the structure of competitive English
- 2. To understand the grammatical aspects and identify the errors
- 3. To enhance verbal ability and identify the errors
- 4. To improve word power to answer competitive challenges
- 5. To make them ready to crack competitive exams

Course Outcomes

Identify the basics of English grammar and its importance L1,L2

Explain the use of grammatical structures in sentences L1,L2

Demonstrate the ability to use various concepts in grammar and vocabulary and their applications in everyday use and in competitive exams L3

Analyze an unknown passage and reach conclusions about it. L4

Choose the appropriate form of verbs in framing sentences and Develop speed reading and comprehending ability thereby perform better in competitive exams L3

UNIT-1: GRAMMAR-1

Nouns-classification-errors-Pronouns-types-errors-Adjectives-types-errors-Articles-definite-indefinite-Degrees of Comparison-Adverbs-types- errors-Conjunctions-usage-

Prepositions-usage-Tag Questions, types-identifying errors- Practice

UNIT-2: GRAMMAR-2

Verbs-tenses- structure-usages- negatives- positives- time adverbs-Sequence of tenses--If Clause-Voice-active voice and passive voice- reported Speech-Agreement- subject and verb-Modals-Spotting Errors-Practices

UNIT-3: VERBAL ABILITY

Sentence completion-Verbal analogies-Word groups-Instructions-Critical reasoning-Verbal deduction-Select appropriate pair-Reading Comprehension-Paragraph-Jumbles-Selecting the proper statement by reading a given paragraph.

UNIT-4: READING COMPREHENSION AND VOCUBULARY

Competitive Vocabulary :Word Building – Memory techniques-Synonyms, Antonyms, Affixes-Prefix &Suffix-One word substitutes-Compound words-Phrasal Verbs-Idioms and Phrases-Homophones-Linking Words-Modifiers-Intensifiers - Mastering Competitive Vocabulary- Cracking the unknowing passage-speed reading techniques- Skimming & Scanning-types of answering–Elimination methods

UNIT-5: WRITING FOR COMPETITIVE EXAMINATIONS

Punctuation- Spelling rules- Word order-Sub Skills of Writing- Paragraph meaning-salient featurestypes - Note-making, Note-taking, summarizing-precise writing- Paraphrasing-Expansion of proverbs-Essay writing-types

Text books

- 1. Wren & Martin, English for Competitive Examinations, S.Chand & Co, 2021
- 2. Objective English for Competitive Examination, Tata McGraw Hill, New Delhi, 2014.

Reference Books:

- 1. Hari Mohan Prasad, *Objective English for Competitive Examination*, Tata McGraw Hill, New Delhi, 2014
- 2. Philip Sunil Solomon, English for Success in Competitive Exams, Oxford 2016
- 3. Shalini Verma, Word Power Made Handy, S Chand Publications
- 4. Neira, Anjana Dev & Co. Creative Writing: A Beginner's Manual. Pearson Education India, 2008.
- 5. Abhishek Jain, Vocabulary Learning Techniques Vol.I&II,RR Global Publishers 2013.
- 6. Michel Swan, Practical English Usage, Oxford, 2006.

Online Resources

- 1. https://www.grammar.cl/english/parts-of-speech.htm
- 2. https://academicguides.waldenu.edu/writingcenter/grammar/partsofspeech
- 3. https://learnenglish.britishcouncil.org/grammar/english-grammar-reference/active-passive-voice
- 4. https://languagetool.org/insights/post/verb-tenses/
- 5. https://www.britishcouncil.in/blog/best-free-english-learning-resources-british-council
- 6. https://www.careerride.com/post/social-essays-for-competitive-exams-586.aspx

Course Code	ENTREPRENEURSHIP AND NEW	L	T	P	C
23BST23	VENTURE CREATION Open Elective-I	3	0	0	3
	Semester			7	V

Course Objectives:

- 1. To foster an entrepreneurial mind-set for venture creation and intrapreneurial leadership.
- 2. To encourage creativity and innovation
- 3. To enable them to learn pitching and presentation skills
- 4. To make the students understand MVP development and validation techniques to determine Product-Market fit and Initiate Solution design, Prototype for Proof of Concept.
- 5. To enhance the ability of analyzing Customer and Market segmentation, estimate Market size, develop and validate Customer Persona

Course Outcomes

CO1: To understand the concept of entrepreneur, analyse recent trends economic development and a creative mindset in starting business. L1,L2

CO2: Understand the problem, analyse and evaluate customer identification, segmentation and customer personas. L1,L2

CO3: Analyse jobs to be done and evaluate customer needs to create and design prototyping and MVP L1,L2,L3

CO4: Understand lean approach in business models, apply business plan, sales plan and financial plan, also to design their own venture and source of funds. L1,L2,L3

CO5: Understand aspiration for scale, analyse venture idea and its key components and also to evaluate and build investors ready pitch.L1,L2

UNIT-I: Entrepreneurship Fundamentals and context Meaning and concept, attributes and mindset of entrepreneurial and intrapreneurial leadership, role models in each and their role in economic development. An understanding of how to build entrepreneurial mindset, skill sets, attributes and networks while on campus. Core Teaching Tool: Simulation, Game, Industry Case Studies (Personalized for students – 16 industries to choose from), Venture Activity

LEARNING OUTCOMES At the end of the Unit, the learners will be able to

Understand the concept of Entrepreneur and Entrepreneurship in India

Analyze recent trends in Entrepreneurship role in economic development

Develop a creative mind set and personality in starting a business.

Unit II: Problem & Customer Identification Understanding and analysing the macro-Problem and Industry perspective - technological, socioeconomic and urbanization trends and their implication on new opportunities - Identifying passion - identifying and defining problem using Design thinking principles - Analysing problem and validating with the potential customer - Understanding customer segmentation, creating and validating customer personas.

Core Teaching Tool: Several types of activities including Class, game, Gen AI, _Get out of the Building' and Venture Activity.

LEARNING OUTCOMES At the end of the Unit, the learners will be able to

Understand the problem and Customer identification.

Analyze problem and validating with potential customer

Evaluate customer segmentation and customer personas

Unit III: Solution design, Prototyping & Opportunity Assessment and Sizing Understanding Customer Jobs-to-be-done and crafting innovative solution design to map to customer's needs and create a strong value proposition - Understanding prototyping and Minimum Viable product (MVP) - Developing a feasibility prototype with differentiating value, features and benefits - Assess relative market position via competition analysis - Sizing the market and assess scope and potential scale of the opportunity. Core Teaching Tool: Venture Activity, no-code Innovation tools, Class activity LEARNING OUTCOMES At the end if the Unit, the learners will be able to

Analyze jobs-to-be-done

Evaluate customer needs to create a strong value proposition

Design and draw prototyping and MVP

UNIT-IV: Business & Financial Model, Go-to-Market Plan Introduction to Business model and types, Lean approach, 9 block lean canvas model, riskiest assumptions to Business models. Importance of Build - Measure – Lean approach. Business planning: components of Business plan- Sales plan, People plan and financial plan. Financial Planning: Types of costs, preparing a financial plan for profitability using financial template, understanding basics of Unit economics and analysing financial performance. Introduction to Marketing and Sales, Selecting the Right Channel, creating digital presence, building customer acquisition strategy. Choosing a form of business organization specific to your venture, identifying sources of funds: Debt& Equity, Map the Start-up Life-cycle to Funding Options. Core Teaching Tool: Founder Case Studies – Sama and Securely Share; Class activity and discussions; Venture Activities.

LEARNING OUTCOMES At the end of the Unit, the learners will be able to:

Understand lean approach in business models

Apply business plan, sales plan and financial plan

Analyze financial planning, marketing channels of distribution.

Design their own venture and source of funds.

UNIT-V: Scale Outlook and Venture Pitch readiness Understand and identify potential and aspiration for scale vis-a-vis your venture idea. Persuasive Storytelling and its key components. Build an Investor ready pitch deck. Core Teaching Tool: Expert talks; Cases; Class activity and discussions; Venture Activities.

LEARNING OUTCOMES At the end of the Unit, the learners will be able to

Understand aspiration for scale

Analyze venture idea and its key components

Evaluate and build investors ready pitch

TEXT BOOKS

- 1. Robert D. Hisrich, Michael P. Peters, Dean A. Shepherd, Sabyasachi Sinha . Entrepreneurship, McGrawHill, 11th Edition.(2020)
- 2. Ries, E. The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses. Crown Business, (2011).
- 3. Osterwalder, A., & Pigneur, Y. Business Model Generation: A Handbook for Visionaries, Game Changers, and Challengers. John Wiley & Sons. (2010).

REFERENCES

- 1. Simon Sinek, Start with Why, Penguin Books limited. (2011)
- 2. Brown Tim, Change by Design Revised & Updated: How Design Thinking
- 3. Transforms Organizations and Inspires Innovation, Harper Business.(2019)
- 4. Namita Thapar (2022) The Dolphin and the Shark: Stories on Entrepreneurship, Penguin Books Limited
- 5. Saras D. Sarasvathy, (2008) Effectuation: Elements of Entrepreneurial Expertise, Elgar Publishing Ltd.

E-RESOURCES

Learning resource- Ignite 5.0 Course Wadhwani platform (Includes 200+ components of custom created modular content + 500+ components of the most relevant curated content)

B.TECH. – III YEAR II SEMESTER

Course Code	DIGITAL SIGNAL PROCESSING	L	T	P	C
23ECT18		3	0	0	3
	Semester				VI

Course Objectives:

- 1. To get familiar with the properties of discrete time signals, systems and z-transform.
- 2. To learn the importance of FFT algorithm for computation of Discrete Fourier Transform and Fast Fourier Transform with decimations.
- 3. To understand the implementations of digital filter structures.
- 4. To analyse the FIR filter design using Fourier series and windowing methods.
- 5. To gain the knowledge on Programmable DSP Devices.

Course Outcomes: At the end of the course, the students will be able to

- 1. Familiar with the properties of discrete time signals, systems and z-transform.
- 2. Learn the importance of FFT algorithm for computation of Discrete Fourier Transform and Fast Fourier Transform with decimations.
- 3. Understand the implementations of digital filter structures.
- 4. Analyse the FIR filter design using Fourier series and windowing methods.
- 5. Gain the knowledge on Programmable DSP Devices.

UNITI

Introduction to discrete time signals and systems: Introduction to digital signal processing, Review of discrete-time signals and systems, Analysis of discrete-time linear time invariant systems, frequency domain representation of discrete time signals and systems

Z–Transform: Definition, ROC, Properties, Poles and Zeros in Z-plane, the inverse Z-Transform, System analysis, Transfer function, BIBO stability, System Response to standard signals, Solution of difference equations with initial conditions, Illustrative Problems, analysis of linear time-invariant systems in the z-domain, pole-zero stability.

UNIT II

Discrete Fourier Transform: Introduction, Discrete Fourier Series, properties of DFS, Discrete Fourier Transform, Inverse DFT, properties of DFT, Linear and Circular convolution, convolution using DFT, sampling, Quantization effects.

Fast Fourier Transform: Introduction, Fast Fourier Transform, Radix-2 Decimation in time and Decimation in frequency FFT, Inverse FFT (Radix-2).

UNIT III

IIR Filters: Introduction to digital filters, Analog filter approximations – Butterworth and Chebyshev, Design of IIR Digital filters from analog filters by Impulse invariant and bilinear transformation methods, Frequency transformations, Basic structures of IIR Filters - Direct form-I, Direct form-II, Cascade form and Parallel form realizations.

UNIT IV

FIR Filters: Introduction, Characteristics of FIR filters with linear phase, Frequency response of linear phase FIR filters, Design of FIR filters using Fourier series and windowing methods (Rectangular, Triangular, Raised Cosine, Hanging, Hamming, Blackman), Comparison of IIR & FIR filters, Basic structures of FIR Filters – Direct form, Cascade form, Linear phase realizations.

UNIT V

Architectures for Programmable DSP Devices: Architecture of TMS320C5X: Introduction, Bus Structure, Central Arithmetic Logic Unit, Auxiliary Register ALU, Index Register, Block Move Address Register, Parallel Logic Unit, Memory mapped registers, program controller, some flags in the status registers, On- chip memory, On-chip peripherals.

Textbooks:

- 1. John G. Proakis, Dimitris G. Manolakis, Digital Signal Processing, Principles, Algorithms, and Applications, Pearson Education, 2007.
- 2. A.V.Oppenheim and R.W. Schaffer, Discrete Time Signal Processing, PHI.

References:

- 1. S.K.Mitra, Digital Signal Processing A practical approach, 2nd Edition, Pearson Education, New Delhi, 2004.
- 2. MH Hayes, Digital Signal Processing, Schaum's Outline series, TATA Mc-Graw Hill, 2007.
- 3. Robert J. Schilling, Sandra L. Harris, Fundamentals of Digital Signal Processing using Matlab, Thomson, 2007.

Course Code	MICROWAVE AND OPTICAL	L	T	P	C
23ECT19	COMMUNICATION	3	0	0	3
	Semester				VΙ

Course Objectives:

- To analyse different modes of operation in rectangular wave guides, circular wave guides and resonators.
- To study and analyse various microwave components and microwave sources.
- To gain knowledge on different microwave semiconductor devices and microwave measurements procedures.
- To analyse different optical fiber modes and to study different types of distortions and losses in optical communication.
- To study various optical sources, optical detectors and to analyze various optical links.

Course outcomes. At the end of this course, the students will be able to

- Analyze different modes of operation in rectangular wave guides, circular wave guides and resonators.
- Understand and analyze various microwave components and microwave sources.
- Gain knowledge on different microwave semiconductor devices and microwave measurements procedures.
- Analyze different optical fiber modes and to study different types of distortions and losses in optical communication.
- Understand study various optical sources, optical detectors and to analyze various optical links.

UNIT I

Waveguides: Introduction, Rectangular waveguides, Field expressions for TE and TM modes, Wave propagation in the guide, Phase and group velocities, Power transmission and attenuation, Waveguide current and mode excitation, Circular waveguide – TE and TM modes(**Qualitative treatment only**), Wave propagation, Cavity resonators (**Qualitative treatment only**).

UNIT II

Passive Microwave Devices: Introduction to scattering parameters and their properties, Terminations, Variable short circuit, Attenuators, Phase shifters, Hybrid Tees (H-plane, E-plane, Magic Tees), Directional Couplers – Bethe hole and Two hole Couplers, Deriving Scattering matrix for Microwave passive devices. Microwave propagation in Ferrites, Gyrator, Isolator, Circulator.

Microwave Amplifiers and Oscillators: Microwave Tubes: Linear Beam Tubes – Two cavity Klystron amplifier -velocity modulation, bunching process, output power, Reflex Klystron oscillator, power output and efficiency, Travelling Wave Tube (TWT) – Bunching process and amplification process (Qualitative treatment only). Crossed Field Tubes – Magnetron oscillator, pi-mode operation, power output and efficiency, Hartree Condition.

UNIT III

Microwave Semiconductor Devices: Gunn Oscillator – Principle of operation, Characteristics, Two valley model, IMPATT, TRAPATT diodes.

Microwave Measurements: Description of Microwave bench-different blocks and their features, errors and precautions, Microwave power measurements, Measurement of attenuation, frequency, VSWR (low, medium, high), Measurement of _Q' of a cavity, Impedance measurements.

UNIT IV

Introduction to Optical Fibers and Transmission Characteristics - The propagation of light in optical waveguides – Classification of optical fibers – Numerical aperture, Step index and Graded index fiber – Modes in cylindrical fiber – Linearly polarized modes, Attenuation: Absorption, Scattering, Bending losses. Modal dispersion and chromatic dispersion – Single mode fiber, multi mode fiber - waveguide dispersion– MFD – PMD

UNIT V

Optical Transmitters and Receivers: Optical Sources: - Light source materials - LED homo and hetero structures - surface and edge emitters - Quantum efficiency - Injection Laser Diode - Modes and threshold condition - Structures and Radiation Pattern. Optical detectors: - Physical principles - PIN and APD diodes - Photo detector noise

Optical Link Design: Point- to- point links – System considerations – Link Power budget – Rise time budget.

Textbooks:

- 1. David M. Pozar, Microwave Engineering John Wiley & Sons, Inc. 4th edition, 2012
- 2. Samuel Y. Liao, —Microwave Devices and Circuits, PHI publications, Third Edition, 1997.
- 3. Gerd Keiser, —Optical Fiber Communications, McGraw Hill, Third Edition, 2000.

References:

- 1. R. E. Collin, —Foundations for Microwave Engineering, Wiley Student Edition, Second Edition, 2009.
- 2. Om. P. Gandhi, —Microwave: Engineering and Applications , Kai Fa Book Company, 1981.
- 3. Reich H. J., et al, —Microwave Principles, MIT Press, 1972.
- 4. F E Terman, —Electronic and Radio Engineering, McGraw Hill, 4th Edition, 1984

Course Code	VLSI DESIGN	L	T	P	C
23ECT20		3	0	0	3
	Semester			7	/I

Course Objectives:

- 1. To understand the steps involved in fabrication of ICs using MOS transistor technology.
- 2. To learn about the VLSI design processes, Stick diagrams and Layouts.
- 3. To gain knowledge on the Gate Level Design concepts.
- 4. To learn the design of various subsystems with different VLSI Design styles.
- 5. To get familiar with CMOS testing techniques.

Course Outcomes: At the end of the course, the students will be able to

- 1. Understand the steps involved in fabrication of ICs using MOS transistor technology.
- 2. Learn about the VLSI design processes, Stick diagrams and Layouts.
- 3. Gain knowledge on the Gate Level Design concepts.
- 4. Learn the design of various subsystems with different VLSI Design styles.
- 5. Familiar with CMOS testing techniques.

UNITI

Introduction: Brief Introduction to IC technology MOS, PMOS, NMOS, CMOS & BiCMOS Technologies. Basic Electrical Properties of MOS and BiCMOS Circuits: IDS - VDS relationships, MOS transistor Threshold Voltage, figure of merit, Transconductance, Pass transistor, NMOS Inverter, Various pull ups, CMOS Inverter analysis and design, Bi-CMOS Inverters.

UNIT II

VLSI Circuit Design Processes: VLSI Design Flow, MOS Layers, Stick Diagrams, Design Rules and Layout, Lambda(λ)-based design rules for wires, contacts and Transistors, Layout Diagrams for NMOS and CMOS Inverters and Gates, Scaling of MOS circuits, Limitations of Scaling.

UNIT III

Gate level Design: Logic gates and other complex gates, Switch logic, Alternate gate circuits. Basic Circuit Concepts: Sheet Resistance Rs and its concepts to MOS, Area Capacitances calculations, Inverter Delays, Driving large Capacitive Loads, Wiring Capacitances, Fan-in and fan-out

UNIT IV

Subsystem Design: Shifters, Adders, ALUs, Multipliers, Parity generators, Comparators, Counters. VLSI Design styles: Full-custom, Standard Cells, Gate-arrays, FPGAs, CPLDs and Design Approach for Full-custom and Semi-custom devices, parameters influencing low power design.

UNIT V

CMOS Testing: Need for testing, Design for testability - built in self-test (BIST) - testing combinational logic -testing sequential logic - practical design for test guide lines - scan design techniques.

Textbooks:

- 1. Essentials of VLSI Circuits and Systems, Kamran Eshraghian, EshraghianDougles, A. Pucknell, 2005, PHI.
- 2. Modern VLSI Design Wayne Wolf, 3 Ed., 1997, Pearson Education.

References:

- 1. CMOS VLSI Design-A Circuits and Systems Perspective, Neil H.E Weste, David Harris, Ayan Banerjee, 3rd Edn, Pearson, 2009.
- 2. BehzadRazavi, —Design of Analog CMOS Integrated Circuits, McGraw Hill, 2003.
- 3. Jan M. Rabaey, —Digital Integrated Circuits^{||}, AnanthaChandrakasan and Borivoje Nikolic, Prentice-Hall of India Pvt.Ltd, 2nd edition, 2009.

Course Code	ELECTRONIC MEASUREMENTS AND	L	T	P	C
23ECT21a	INSTRUMENTATION (PROFESSIONAL ELECTIVE 2)	3	0	0	3
Semester			•	VI	

Course Objectives:

- 1. To know about the performance characteristics of instruments and measurement of electrical quantities.
- 2. To understand the construction, working and applications of different types of CRO's.
- 3. To analyze the working of different types of bridges.
- 4. To study the working of signal & function generators and analyzers.
- 5. To analyze the working of sensors and transducers in measuring physical parameters.

Course Outcomes: At the end of this course, the students will be able to

- 1. Learn about the performance characteristics of instruments and measurement of electrical quantities.
- 2. Understand the construction, working and applications of different types of CRO's.
- 3. Compare the working of different types of bridges.
- 4. Know the working of signal & function generators and analyzers.
- 5. Grasp the working of sensors and transducers in measuring physical parameters.

UNIT-I

Performance characteristics of Instruments: Static characteristics, Accuracy, Precision, Resolution, Sensitivity, static and dynamic calibration, Errors in Measurement, and their statistical analysis, dynamic characteristics-speed of Response, fidelity, Lag and dynamic error. DC ammeters, DC voltmeters-multirange, range extension/solid state and differential voltmeters, AC voltmeters-multirange, range extension. Thermocouple type RF ammeter, ohm meters, series type, shunt type, multimeter for voltage, current and resistance measurements.

UNIT-II

Oscilloscopes: Introduction, Basic Principle, Standard specifications of CRO,CRT features, vertical and horizontal amplifiers, horizontal and vertical deflection systems, sweep trigger pulse, delay line, sync selector circuits, probes for CRO – active, passive, and attenuator type, triggered sweep CRO, and Delayed sweep, dual trace/beam CRO, Measurement of amplitude, frequency and phase (Lissajous method). Principles of sampling oscilloscope, storage oscilloscope, and digital storage oscilloscope, Digital frequency counters, time & Period measurements.

UNIT-III

Bridges: DC Bridges for Measurement of resistance: Wheat stone bridge, Kelvin's Bridge, AC Bridges for Measurement of inductance- Maxwell's bridge, Hay's Bridge, Anderson bridge. Measurement of capacitance- Schearing Bridge, Wien Bridge. Errors and precautions in using bridges.

UNIT-IV

Signal Generators: Signal generator-fixed and variable, AF oscillators, function generators, pulse, random noise, sweep, and arbitrary waveform generators, their standards, specifications and principles of working (Block diagram approach). Wave analyzers, Harmonic distortion analyzers, Spectrum analyzers, and Logic analyzers.

UNIT-V

Sensors and Transducers - Active and passive transducers: Measurement of displacement (Resistance, capacitance, inductance; LVDT) Force (strain gauges) Pressure (piezoelectric transducers) Temperature (resistance thermometers, thermocouples and thermistors), Velocity, Acceleration, Vibration, pH measurement Signal Conditioning Circuits.

TEXT BOOKS:

- 1. A.D. Helfrick and W.D. Cooper, —Modern Electronic Instrumentation and Measurement Techniques, 5th Edition, PHI, 2002.
- 2. H.S.Kalsi, —Electronic Instrumentation, 2nd edition, Tata McGraw Hill, 2004.

REFERENCES:

- 1. David A. Bell, —Electronic Instrumentation & Measurements, 2nd Edition, PHI, 2003.
- 2. K. Lal Kishore, —Electronic Measurements & Instrumentations , Pearson Education, 2009.

Course Code	EMBEDDED SYSTEMS & IOT	L	T	P	С
23ECT21b	(PROFESSIONAL ELECTIVE 2)	3	0	0	3
Semester				7	VI

Course Objectives:

- 1. To understand the Architecture, Development & Design of Embedded Systems and IoT.
- 2. To learn the architecture and programming of ARM Microcontroller.
- 3. To be able to work with Raspberry Pi using Python Programming.
- 4. To know about the loT standards, communication technologies and protocols for IoT devices.
- 5. To implement case studies and applications using the tools and techniques of IoT Platform.

Course Outcomes: At the end of the course, the students will be able to

- 1. Understand the Architecture, Development & Design of Embedded Systems and IoT.
- 2. Learn the architecture and programming of ARM Microcontroller.
- 3. Work with Raspberry Pi using Python Programming.
- 4. Know about the loT standards, communication technologies and protocols for IoT devices.
- 5. Implement case studies and applications using the tools and techniques of IoT Platform.

UNIT I

Introduction to Embedded Systems and Internet of Things (IoT): Introduction, Hardware & Software Architecture of Embedded Systems, Embedded Systems Development process, Architecture of Internet of Things, Physical Design & Logical Design of IoT, IoT Enabling Technologies, IoT Levels & Deployment Tools, Applications of Embedded Systems and IoT, Design Methodology for IOT Products.

UNIT II

ARM Microcontrollers Architecture and Programming: Architecture, Pin Diagram, Register Set & Modes, Memory Organization, Instruction set, Programming ports, Timer/Counter, Serial communication, I/O System, Development Tools, interrupts in C, Introduction ARM mBed platform. **UNIT III**

Fundamentals of Python Programming & Raspberry Pi: Introduction to python programming, Data Types & Data Structures, working with functions, Modules & Packages, File Handling, classes, REST full Web Services, Client Libraries, Introduction & programming Raspberry Pi3, Interfaces, Integrating Input Output devices with Raspberry Pi3

UNIT IV

IoT Technologies, Standards, Tools & M2M Network: Fundamental characteristics and high-level requirements of IoT, IoT Reference models; Introduction to Communication Technologies & Protocols of IoT: BLE, Wi-Fi, LoRA, 3G/4G Technologies and HTTP, MQTT, CoAP protocols; Relevant Practicals on above technologies, M2M Network, SDN (Software Defined Networking) & NFV (Network Function Virtualization) for IoT

UNIT V

IoT Platform, Cloud Computing Platforms & Data Analytics for IoT Development: IOT Platform Architecture (IBM Internet of Things & Watson Platforms); API Endpoints for Platform Services; Devices Creation and Data Transmission; Introduction to NODE-RED and Application deployment, Introduction to Data Analytics, Apache Hadoop, Apache Oozie, Spark & Storm

TEXT BOOKS

- 1. ArsheepBahga, Vijay Madisetti, —Internet of Things: A Hands-On Approachl, 1st Edition, VPT, 2014.
- 2. K.V.K.K.Prasad, —Embedded Real Time Systems: Concepts, Design and Programmingl, 1st Edition, Dreamtech Publication, 2014.
- 3. Adrian McEwen, Hakim Cassimally, —Designing the Internet of Things, Wiley Publications, 2013

REFERENCES

- 1. Jonathan W Valvano, —Embedded Microcomputer Systems: Real-Time Interfacing, 3rd Edition, Thomson Engineering, 2012.
- 2. Olivier Hersent, David Boswarthick, Omar Elloumi, —The Internet of Things: Key applications and Protocolsl, 2nd Edition, Wiley Publications, 2012.
- 3. Rene Beuchat, Andrea Guerrieri & Sahand Kashani —Fundamentals of System-on-Chip Design on Arm Cortex-M Microcontrollers Paperback, 2 August 2021.

Course Code	SPEECH PROCESSING	L	T	P	C
23ECT21c	(PROFESSIONAL ELECTIVE 2)	3	0	0	3
Semester				7	VI

Course Objectives:

- 1. To impart knowledge on anatomy and physiology of speech organs and the process of Speech Production.
- 2. To understand the methods for extracting of speech using Time domain parameters.
- 3. To learn the Frequency Domain Methods for Speech Processing.
- 4. To interpret and analyze LPC Parameters for Speech Processing.
- 5. To introduce the concepts of homomorphic Speech Processing.

Course Outcomes: At the end of the course, the students will be able to

- 1. Gain knowledge on anatomy and physiology of speech organs and the process of Speech Production.
- 2. Understand the methods for extracting of speech using Time domain parameters.
- 3. Learn the Frequency Domain Methods for Speech Processing.
- 4. Interpret and analyze LPC Parameters for Speech Processing.
- 5. Grasp the concepts of homomorphic Speech Processing.

UNIT I

Fundamentals of Digital Speech Processing: Anatomy & Physiology of Speech Organs, The process of Speech Production, The Acoustic Theory of Speech Production – Uniform lossless tube model, effect of losses in vocal tract and radiation at lips, Digital models for speech signals, compare speech and audio signals.

UNIT II

Time Domain Methods for Speech Processing: Time domain parameters of speech, methods for extracting the parameters: Zero crossings, Auto-correlation function, pitch estimation.

UNIT III

Frequency Domain Methods for Speech Processing:

Short time Fourier analysis, Filter bank analysis, Spectrographic analysis, Formant extraction, Pitch extraction.

UNIT IV

Linear predictive Coding (LPC) for Speech: Formulation of linear prediction problem in time domain, solution of normal equations, Interpretation of linear prediction in auto correlation and spectral domains, Method of Solution of the LPC Parameters: Pitch Detection using LPC Parameters, Formant Analysis using LPC Parameters.

UNIT V

Homomorphic Speech Processing: Introduction Homomorphic Systems for Convolution: Properties of the Complex Cepstrum, Computational Considerations, The Complex Cepstrum of Speech, pitch Detection and Formant Estimation; Applications of speech processing – Speech Enhancement, Speech recognition, Speech synthesis and Speaker Verification.

Textbooks:

- 1. L.R. Rabiner and S. W. Schafer, Digital Processing of Speech Signals, Pearson Education.
- 2. Douglas O' Shaughnessy, Speech Communications: Human & Machine, 2nd Ed., Wiley-IEEE Press.

References:

- 1. Thomas F. Quatieri, Discrete Time Speech Signal Processing: Principles and Practice, 1st Ed., Pearson Education.
- 2. Ben Gold & Nelson Morgan, Speech and Audio Signal Processing: Processing and Perception of Speech and Music ,1st Ed., Wiley.

Course Code	DIGITAL IMAGE PROCESSING	L	T	P	C
23ECT22a	(PROFESSIONAL ELECTIVE 3)	3	0	0	3
Semester			7	VI	

Course Objectives:

- 1. To learn the fundamentals of Image Processing with different Transforms.
- 2. To understand functions of Intensity Transformations and working fundamentals of Spatial Filters
- 3. To implement various models of Restoring and Reconstruction of Images from filtering projections.
- 4. To study the concepts of image compression using different coding &Wavelets and Multiresolution Processes.
- 5. To design image processing systems using Segmentation techniques for Morphological & Color Images.

Course Outcomes: At the end of the course, the students will be able to

- 1. Learn the fundamentals of Image Processing with different Transforms.
- 2. Uunderstand the functions of Intensity Transformations and working fundamentals of Spatial Filters
- 3. Implement various models of Restoring and Reconstruction of Images from filtering projections.
- 4. Grasp the concepts of image compression using different coding &Wavelets and Multiresolution Processes.
- 5. Design the image processing systems using Segmentation techniques for Morphological & Color Images.

UNITI

Introduction: Introduction to Image Processing, Fundamental steps in digital image processing, components of an image processing system, image sensing and acquisition, image sampling and quantization, some basic relationships between pixels, an introduction to the mathematical tools used in digital image processing. Image Transforms: Need for image transforms, Discrete Fourier transform (DFT) of one variable, Extension to functions of two variables, some properties of the 2-D Discrete Fourier transform, Importance of Phase, Walsh Transform. Hadamard transform, Haar Transform, Slant transform, Discrete Cosine transform, KL Transform, SVD and Radon Transform, Comparison of different image transforms.

UNIT II

Intensity Transformations and Spatial Filtering: Background, Some basic intensity transformation functions, histogram processing, fundamentals of spatial filtering, smoothing spatial filters, sharpening spatial filters, Combining spatial enhancement methods Filtering in the Frequency Domain: Preliminary concepts, The Basics of filtering in the frequency domain, image smoothing using frequency domain filters, Image Sharpening using frequency domain filters, Selective filtering.

UNIT III

Image Restoration and Reconstruction: A model of the image degradation / Restoration process, Noise models, restoration in the presence of noise only-Spatial Filtering, Periodic Noise Reduction by frequency domain filtering, Linear, Position –Invariant Degradations, Estimating the degradation function, Inverse filtering, Minimum mean square error (Wiener) filtering, constrained least squares filtering, geometric mean filter, image reconstruction from projections.

UNIT IV

Image compression: Fundamentals, Basic compression methods: Huffman coding, Golomb coding, Arithmetic coding, LZW coding, Run-Length coding, Symbol-Based coding, Bit-Plane coding, Block Transform coding, Predictive coding Wavelets and Multiresolution Processing: Image pyramids, subband coding, Multiresolution expansions, wavelet transforms in one dimensions & two dimensions, Wavelet coding.

UNIT V

Image segmentation: Fundamentals, point, line, edge detection, thresholding, region —based segmentation. Morphological Image Processing: Preliminaries, Erosion and dilation, opening and closing, basic morphological algorithms for boundary extraction, thinning, gray-scale morphology, Segmentation using morphological watersheds. Color image processing: color fundamentals, color models, pseudo color image processing, basics of full color image processing, color transformations, smoothing and sharpening. Image segmentation based on color, noise in color images, color image compression.

Textbooks: 1. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd edition, Prentice Hall, 2008. 2. Jayaraman, S. Esakkirajan, and T. Veerakumar, Digital Image Processing, Tata McGraw-Hill Education, 2011.

Reference Books: 1. Anil K.Jain, —Fundamentals of Digital Image Processingle, Prentice Hall of India, 9th Edition, Indian Reprint, 2002. 2. B.Chanda, D.DuttaMajumder, —Digital Image Processing and Analysisle, PHI, 2009

Online Learning Resources:

https://nptel.ac.in/courses/117105079 https://nptel.ac.in/courses/117105135

Course Code	ARTIFICIAL INTELLIGENCE & MACHINE	L	T	P	C
23CST26	LEARNING	2	0	0	3
	(PROFESSIONAL ELECTIVE 3)	3			
Semester			7	VI	

Course Objectives:

- 1. To learn the basics and problems of Artificial Intelligence with rationality and structure of agents.
- 2. To describe the search for solutions using various search strategies & algorithms for optimization.
- 3. To evaluate the representation of Agents with Propositional Logic in Shopping World.
- 4. To understand the concepts of Machine Learning with different Perspectives.
- 5. To analyze Decision Tree Representation with different problems& issues

Course Outcomes:

At the end of the course, the students will be able to

- 1. To learnthe basics and problems of Artificial Intelligence with rationality and structure of agents.
- 2. To describe the search for solutions using various search strategies & algorithms for optimization.
- 3. To evaluate the representation of Agents with Propositional Logic in Shopping World.
- 4. To understand the concepts of Machine Learning with different Perspectives.
- 5. To analyze Decision Tree Representation with different problems& issues.

UNIT I Introduction: What Is AI?, The Foundations of Artificial Intelligence, The History of Artificial Intelligence, The State of the Art, Agents and Environments, Good Behavior: The Concept of Rationality, The Nature of Environments, The Structure of Agents.

UNIT II Problem Solving: Problem-Solving Agents, Example Problems, Searching for Solutions, Uninformed Search Strategies, Informed (Heuristic) Search Strategies, Local Search Algorithms and Optimization Problems, Searching with Nondeterministic Actions.

UNIT III Knowledge Representation: Knowledge-Based Agents, Logic, Propositional Logic: A Very Simple Logic, Ontological Engineering, Categories and Objects, Events, Mental Events and Mental Objects, Reasoning Systems for Categories, The Internet Shopping World.

UNIT IV Introduction to Machine Learning: Well-Posed Learning Problem, Designing a Learning system, Perspectives and Issues in Machine Learning.

Concept Learning and The General-to-Specific Ordering: Introduction, A Concept Learning Task, Concept Learning as Search, FIND-S: Finding a Maximally Specific Hypothesis, Version Spaces and the Candidate Elimination Algorithm, Remarks on Version spaces and Candidate-Elimination, Inductive Bias

UNIT V Decision Tree Learning: Introduction, Decision Tree Representation, Appropriate Problems for Decision Tree Learning, The Basic Decision Tree Learning Algorithm, Hypothesis Space Search in Decision Tree Learning, Inductive Bias in Decision Tree Learning, Issues in Decision Tree Learning.

Text Books:

- 1) Stuart Russell and Peter Norvig, —Artificial Intelligence: A Modern Approach , 3rd Edition, Pearson
- 2) Tom M. Mitchell, Machine Learning, McGraw Hill Edition, 2013

Reference Books:

- 1) Saroj Kaushik, —Artificial Intelligencell, Cengage Learning India, 2011
- 2) Elaine Rich and Kevin Knight, —Artificial Intelligencel, Tata McGraw Hill
- 3) David Poole and Alan Mack worth, —Artificial Intelligence: Foundations for Computational Agents, Cambridge University Press 2010.
- 4) Trivedi, M.C., —A Classical Approach to Artifical Intelligence, Khanna Publishing House, Delhi.
- 5) Christopher Bishop, Pattern Recognition and Machine Learning (PRML), Springer, 2007.
- 6)ShaiShalev- Shwartz and Shai Ben-David, Understanding Machine Learning: From Theory to Algorithms (UML), Cambridge University Press, 2014.

ourse Code	SATELLITE COMMUNICATIONS	L	T	P	C
23ECT22b	(PROFESSIONAL ELECTIVE 3)	3	0	0	3
Semester			7	VI	

Course Objectives:

- 1. To learn the principles of orbital mechanics& satellite launch system with performance parameters.
- 2. To describe the elements of communication satellite design for matching reliability.
- 3. To know the working concepts of various multiple access techniques and Onboard processing.
- 4. To analyze the satellite links design with communication links.
- 5. To evaluate the working of earth station design with satellite broadcasting.

Course Outcomes: At the end of the course, the students will be able to

- 1. Learn the principles of orbital mechanics& satellite launch system with performance parameters.
- 2. Describe the elements of communication satellite design for matching reliability.
- 3. Gain knowledge on various multiple access techniques and Onboard processing.
- 4. Analyze the satellite links design with communication links.
- 5. Evaluate the working of earth station design with satellite broadcasting.

UNITI

Elements of orbital mechanics. Equations of motion. Tracking and orbit determination. Orbital correction/control. Satellite launch systems. Multistage rocket launchers and their performance

UNIT II

Elements of communication satellite design. Spacecraft subsystems. Reliability considerations. Spacecraft integration.

UNIT III

Multiple access techniques. FDMA, TDMA,CDMA, WDMA, ODMA, Random access techniques. Satellite onboard processing.

UNIT IV

Satellite link design: Performance requirements and standards. Design of satellite links – DOMSAT, INSAT, INTELSAT and INMARSAT. Satellite - based personal communication. links.

UNIT V

Earth station design. Configurations. Antenna and tracking systems. Satellite broadcasting.

Textbooks: D. Roddy, Satellite Communication (4/e), McGraw-Hill, 2009. T. Pratt & C.W. Bostain, Satellite Communication, Wiley 2000.

References: B.N. Agrawal, Design of Geosynchrons Spacecraft, Prentice-Hall, 1986.

Course Code	MICROWAVE AND OPTICAL	L	T	P	C
23ECP11	COMMUNICATIONS LAB	0	0	3	1.5
Semester			7	VΙ	

Course Objectives:

- 1. To understand the working of microwave bench set up and characteristics of microwave sources.
- 2. To verify the characteristics of various microwave components and to draw the radiation pattern of antennas.
- 3. To verify the characteristics of optical sources & detectors and to study about losses in optical fiber.

Course Outcomes: At the end of this course, the students will be able to

- 1. Understand the working of microwave bench set up and characteristics of microwave sources.
- 2. Verify the characteristics of various microwave components and to draw the radiation pattern of antennas.
- 3. Verify the characteristics of optical sources & detectors and to study about losses in optical fiber.

PART-A: Microwave Lab - Any Seven (7) Experiments

- 1. Reflex Klystron Characteristics
- 2. Gunn Diode Characteristics
- 3. Attenuation Measurement
- 4. Directional Coupler Characteristics
- 5. VSWR Measurement
- 6. Impedance Measurements
- 7. Frequency and Wavelength measurement
- 8. Scattering Parameters of Directional coupler
- 9. Scattering Parameters of Magic TEE
- 10. Radiation pattern measurement of a Antenna
- 11. Antenna gain measurement

Part B: Optical Fiber Lab - Any five (5) Experiments

- 1. Characterization of LED
- 2. Characterization of Laser Diode
- 3. Intensity Modulation of Laser output through Optical fiber
- 4. Measurement of data rate for digital Optical link
- 5. Measurement of Numerical Aperture.
- 6. Measurement of Losses for Analog optical link

Course Code	VLSI DESIGN LAB	L	T	P	С
23ECP12		0	0	3	1.5
Semester			•	VI	

Course Outcomes:

- 1. To design a logic circuit using CMOS transistor using 180 nm technology in terms of schematic, symbol, test bench, DC and AC analysis.
- 2. To evaluate different schematics & output responses for AOI logic by using different software tools.
- 3. To design CMOS circuits using Full & Semi custom IC designs for analyzation.
- 4. To design different layouts using different software tools for analog circuits.

Course Objectives: At the end of the course, the students will be able to

- 1. Design a logic circuit using CMOS transistor using 180 nm technology in terms of schematic, symbol, test bench, DC and AC analysis.
- 2. Evaluate different schematics & output responses for AOI logic by using different software tools.
- 3. Design CMOS circuits using Full & Semi custom IC designs for analyzation.
- 4. Design different layouts using different software tools for analog circuits.

List of Experiments: (Any TEN of the experiments are to be conducted)

1. Design and analysis of CMOS Inverter

- a) Implement CMOS inverter schematic using 180 nm technology and design its symbol.
- b) Implement test bench for CMOS Inverter and check its output response.
- c) Perform DC and AC analysis for CMOS inverter.
- d) Check the performance of CMOS inverter using parametric sweep.

2. Design and analysis of NAND and NOR Logic gates

- a) Implement NAND/NOR schematic using 180 nm technology and design its symbol.
- b) Implement test bench for NAND/NOR and check its output response.
- c) Perform DC and AC analysis for NAND/NOR.
- d) Check the performance of NAND/NOR using parametric sweep.

3. Design and analysis of XOR and XNOR Logic gates

- a) Implement XOR/XNOR schematic using 180 nm technology and design its symbol.
- b) Implement test bench for XOR/XNOR and check its output response.
- c) Perform DC and AC analysis for XOR/XNOR.
- d) Check the performance of XOR/XNOR using parametric sweep.

4. Design of AOI logic

- a) Design Schematic for AB+C_D and check its output response.
- b) Design Schematic for AB_+C_D and check its output response.
- c) Design Schematic for (A+B_)(C+D) and check its output response.
- d) Design Schematic for (A+B_)(C_+D) and check its output response.

5. Design and analysis of Full adder

- a) Design full adder using Full custom IC design.
- b) Design full adder using Semi custom IC design.

6. Analysis of NMOS and PMOS characteristics

- a) Implement test bench for NMOS/PMOS transistor.
- b) Perform DC and AC analysis for NMOS/PMOS transistor
- c) Check the performance of NMOS/PMOS transistor using parametric sweep.

7. Design and analysis of Common source amplifier

- a) Implement CS amplifier schematic using 180 nm technology and design its symbol.
- b) Implement test bench for CS amplifier and check its output response.
- c) Perform DC and AC analysis for CS amplifier.
- d) Check the performance of CS amplifier using parametric sweep.

8. Design and analysis of Common drain amplifier

- a) Implement CD amplifier schematic using 180 nm technology and design its symbol.
- b) Implement test bench for CD amplifier and check its output response.
- c) Perform DC and AC analysis for CD amplifier.
- d) Check the performance of CD amplifier using parametric sweep.

9. Design of MOS differential amplifier

- a) Design differential amplifier schematic using 180 nm technology and its symbol.
- b) Implement test bench for differential amplifier and check its output response.
- c) Perform DC and AC analysis for differential amplifier.
- d) Check the performance of differential amplifier using parametric sweep.

10. Design of differential amplifier using FET/BJT

- a) Design differential amplifier using FET/BJT schematic using 180 nm technology and its symbol.
- b) Implement test bench for two stage differential amplifier and check its output response.
- c) Perform DC and AC analysis for differential amplifier.
- d) Check the performance of differential amplifier using parametric sweep.

11. Design of Inverter Layout

- a) Design and implement inverter schematic.
- b) Design the layout for inverter using 180 nm tech file.
- c) Perform LVS for schematic and layout
- d) Check and remove all DRC violations.
- e) Extract parasitic R and C in layout.

12. Design of NAND/NOR Layout

- a) Design and implement NAND/NOR schematic.
- b) Design the layout for inverter using 180 nm tech file.
- c) Perform LVS for schematic and layout
- d) Check and remove all DRC violations.
- e) Extract parasitic R and C in layout

The students are required to design the schematic diagrams using CMOS logic and to draw the layout diagrams to perform the experiments with the Industry standard EDA Tools.

Software Required:

- i. Mentor Graphics/ Synopsis/ Cadence / Equivalent Industry Standard Software.
- ii. Personal computer system with necessary software to run the programs and to implement.

Course Code	MACHINE LEARNING AND DSP (SOC-IV)	L	T	P	С
23ECP13		0	1	2	2
Semester			VI		

Course Objectives:

- 1. To understand the modules and dependencies for machine learning corresponding to different applications.
- 2. To understand a range of machine learning regression techniques & clustering along with their datasets.
- 3. To write the programs and implement k-Nearest Neighbor algorithm to classify the iris data sets, images & CNN.
- 4. To simulate the basic signal processing operations like convolution and correlation.
- 5. To simulate the DSP operations like DFT, FFT & implement IIR and FIR filters using simulation software and verify their frequency responses.

Course Outcomes: At the end of the course, the students will be able to

- 1. Understand the modules and dependencies for machine learning corresponding to different applications.
- 2. Learn a range of machine learning regression techniques & clustering along with their datasets.
- 3. Write the programs and implement k-Nearest Neighbor algorithm to classify the iris data sets, images & CNN.
- 4. Simulate the basic signal processing operations like convolution and correlation.
- 5. Simulate the DSP operations like DFT, FFT & implement IIR and FIR filters using simulation software and verify their frequency responses.

MACHINE LEARNING (Implement any six concepts)

Implement the following concepts using python with supporting applications.

- 1. Familiarizing with Anaconda and Jupyter for importing modules and dependencies for ML Familiarization with NumPy, Panda and Matplotlib by Loading Dataset in Python
- 2. **Linear regression**: Predict the profit of a company/House price from a dataset using the concept of linear regression. Implement the speech recognition model (NLP) from a speech/audio dataset using the concept of linear regression

3. Logistic regression:

- a) Identify whether the patient has diabetes or not from diabetes dataset using Logistic regression
- b) Implement the speech to text model (NLP- Speech recognitions system) from a speech dataset using the concept of linear regression

4. Polynomial regression :

- a. Determine the quality of wine using wine dataset with the help of polynomial regression
- b. Implement the speech recognition model (NLP) from a speech / audio data set using the concept of polynomial regression.
- 5. **K-means clustering**: Apply the concept of K-means clustering for image segmentation problem (Brain tumor and Lung images)/Color quantization
- 6. Write a program to implement k-Nearest Neighbor algorithm to classify the iris data set to demonstrate the working of the decision tree based ID3 algorithm.
- 7. Write a program to implement the k-Nearest Neighbor algorithm for image classification and distance metric learning for large margin with image classification applications using k-nearest neighbor.
- 8. PCA/LDA: Reduce the dimensionality of a dataset for Face recognition system
- 9. Design an Artificial neural network for Digit classification using Back Propagation Algorithm for MNIST Data set. Train MLP using Gradient descent algorithm by applying Linear, Sigmoid, tanh, and ReLu activation functions
- 10. **Digit recognition using CNN:** Identify the digit s 0-9 from MNIST data and CIFR 10 set using CNN
- 11. ImageClassificationusingCNN:ClassifycatsanddogsusingCNNfromthegivendataset
- 12. LSTM (Long Short-Term Memory Networks)/ARIMA--- Implementation biomedical signals (like EEG, ECG, EMG) classifications and disease prediction.

DIGITAL SIGNAL PROCESSING (Implement any six concepts)

- 1. Generate the following standard discrete time signals.
- i) Unit Impulse ii) Unit step iii) Ramp iv) Exponential v) Sawtooth
- 2. Generate sum of two sinusoidal signals and find the frequency response (magnitude and phase).
- 3. Implement and verify linear and circular convolution between two given signals.
- 4. Implement and verify autocorrelation for the given sequence and cross correlation between two given signals.
- 5. Compute and implement the N-point DFT of a given sequence and compute the power density spectrum of the sequence.
- 6. Implement and verify N-point DIT-FFT of a given sequence and find the frequency response (magnitude and phase).
- 7. Implement and verify N-point IFFT of a given sequence.
- 8. Design IIR Butterworth filter and compare their performances with different orders (Low Pass Filter /High Pass Filter)
- 9. Design IIR Chebyshev filter and compare their performances with different orders (Low Pass Filter /High Pass Filter).
- 10. Design FIR filter (Low Pass Filter /High Pass Filter) using windowing technique.

- i. Using rectangular window, ii. Using hamming window, iii. Using Kaiser window
- 11. Design and verify Filter (IIR and FIR) frequency response by using Filter design and Analysis Tool.
- 12. Compute the Decimation and Interpolation for the given signal.
- 13. Real time implementation of an audio signal using a digital signal processor.

Reference books:

- $1.\ S.N. Sivan and a mand S.N. Deepa, Introduction to neural networks using Matlab, 2006.$
- 2. SimonHaykin, NeuralNetworksandLearningMachines, PHI, 2008, 3rd Edition
- 3. Digital Signal Processing: Alon V. Oppenhelm, PHI
- 4. Digital Signal processing(II-Edition): S.K. Mitra, TMH

Course Code	Technical Paper Writing & IPR	L	T	P	C
23BST28		2	0	0	0
	Semester				

Course Objectives:

- 1. To enable the students to practice the basic skills of research paper writing
- 2. To make the students understand the importance of IP and to educate them on the basic concepts of Intellectual Property Rights.
- 3. To practice the basic skills of performing quality literature review
- 4. To help them in knowing the significance of real life practice and procedure of Patents.
- 5. To enable them learn the procedure of obtaining Patents, Copyrights, & Trade Marks

Course Outcomes: At the end of the course, the students will be able to

- CO1 Identify key secondary literature related to their proposed technical paper writing L1, L2
- CO2 Explain various principles and styles in technical writing L1, L2
- CO3 Use the acquired knowledge in writing a research/technical paper L3
- CO4 Analyse rights and responsibilities of holder of Patent, Copyright, Trademark, International Trademark etc. L4

CO5 develop skill of making search of various forms of IPR by using modern tools and techniques. L5

UNIT-I:

Principles of Technical Writing: styles in technical writing; clarity, precision, coherence andlogical sequence in writing-avoiding ambiguity- repetition, and vague language -highlighting your findings-discussing your limitations -hedging and criticizing -plagiarism and paraphrasing .

UNIT-II:

Technical Research Paper Writing: Abstract- Objectives-Limitations-Review of Literature- Problems and Framing Research Questions- Synopsis

UNIT-III:

Process of research: publication mechanism: types of journals- indexing-seminars- conferences- proof reading -plagiarism style; seminar & conference paper writing; Methodology-discussion-results-citation rules

UNIT-IV:

Introduction to Intellectual property: Introduction, types of intellectual property, International organizations, agencies and treaties, importance of intellectual property rights Trade Marks: Purpose and function of trademarks, acquisition of trade mark rights, protectable matter, selecting and evaluating trade mark, trade mark registration processes.

UNIT - V:

Law of copy rights: Fundamentals of copy right law, originality of material, rights of reproduction, rights to perform the work publicly, copy right ownership issues, copy right registration, notice of copy right, international copy right law Law of patents: Foundation of patent law, patent searching process, ownership rights and transfer. Patent law, intellectual property audits.

Textbooks:

- 1. Deborah. E. Bouchoux, Intellectual Property Rights, Cengage Learning India, 2013
- 2. Meenakshi Raman, Sangeeta Sharma. Technical Communication: Principles and practices. Oxford.

Reference Books:

- 1. R.Myneni, Law of Intellectual Property, 9th Ed, Asia law House, 2019.
- 2. Prabuddha Ganguli, Intellectual Property Rights Tata Mcgraw Hill, 2001
- 3. P.Naryan, Intellectual Property Law, 3rd Ed, Eastern Law House, 2007.
- 4. Adrian Wallwork. *English for Writing Research Papers* Second Edition. Springer Cham Heidelberg New York ,2016
- 5. Dan Jones, Sam Dragga, Technical Writing Style

Online Resources

- 1. https://theconceptwriters.com.pk/principles-of-technical-writing/
- 2. https://www.ewh.ieee.org/soc/emcs/acstrial/newsletters/summer10/TechPaperWriting.html
- 3. https://www.ewh.ieee.org/soc/emcs/acstrial/newsletters/summer10/TechPaperWriting.html
- 4. https://www.manuscriptedit.com/scholar-hangout/process-publishing-research-paper-journal/
- $5.\ https://www.icsi.edu/media/website/Intellectual PropertyRightLaws\&Practice.pdf$
- 6. https://lawbhoomi.com/intellectual-property-rights-notes/
- 7. https://www.extension.purdue.edu/extmedia/ec/ec-723.pdf

Course Code	DISASTER MANAGEMENT	L	T	P	С
23CET19	Open Elective-II	3	0	0	3
	Semester				

Course Objectives: The objectives of this course are to make the student :

- 1. To understand the fundamental concepts of natural disasters, their occurrence, and disaster risk reduction strategies.
- 2. To analyze the impact of cyclones on structures and explore retrofitting techniques for adaptive reconstruction.
- 3. To apply wind engineering principles and computational techniques in designing wind-resistant structures.
- 4. To evaluate earthquake effects on buildings and develop strategies for seismic retrofitting.
- 5. To assess seismic safety planning, design considerations, and innovative construction materials for disaster-resistant structures.

Course Outcomes: After successful completion of this course, students will be able to:

- 1. Understand the fundamental concepts of natural disasters, their occurrence, and disaster risk reduction strategies.
- 2. Analyze the impact of cyclones on structures and explore retrofitting techniques for adaptive reconstruction.
- 3. Apply wind engineering principles and computational techniques in designing wind-resistant structures.
- 4. Evaluate earthquake effects on buildings and develop strategies for seismic retrofitting.
- 5. Assess seismic safety planning, design considerations, and innovative construction materials for disaster-resistant structures.

UNIT - I

Introduction to Natural Disasters— Brief Introduction to Different Types of Natural Disasters, Occurrence of Disasters in Different Climatic and Geographical Regions, Hazard Maps (Earthquake and Cyclone) of The World and India, Regulations for Disaster Risk Reduction, Post-Disaster Recovery and Rehabilitation (Socioeconomic Consequences).

UNIT - II

Cyclones and Their Impact—Climate Change and Its Impact On Tropical Cyclones, Nature of Cyclonic Wind, Velocities and Pressure, Cyclone Effects, Storm Surges, Floods, and Landslides. Behavior of Structuresin Past Cyclones and Windstorms, Case Studies. Cyclonic Retrofitting, Strengthening of Structures, and Adaptive Sustainable Reconstruction. Life-Line Structures Such as Temporary Cyclone Shelters.

UNIT – III

Wind Engineering and Structural Response– Basic Wind Engineering, Aerodynamics of Bluff Bodies, Vortex Shedding, and Associated Unsteadiness Along and Across Wind forces. Lab: Wind Tunnel Testing and Its Salient Features. Introduction to Computational Fluid Dynamics (CFD). General Planning and Design Considerations Under Windstorms and Cyclones. Wind

Effects On Buildings, towers, Glass Panels, Etc., and Wind-Resistant Features in Design. Codal Provisions, Design Wind Speed, Pressure Coefficients. Coastal Zoning Regulations for Construction and Reconstruction in Coastal Areas. Innovative Construction Materials and Techniques, Traditional Construction Techniques in Coastal Areas.

UNIT - IV

Seismology and Earthquake Effects— Causes of Earthquakes, Plate Tectonics, Faults, Seismic Waves; Magnitude, Intensity, Epicenter, Energy Release, and Ground Motions. Earthquake Effects— On Ground, Soil Rupture, Liquefaction, Landslides. Performance of Ground and Buildings in Past Earthquakes—Behavior of Various Types of Buildings and Structures, Collapse Patterns; Behavior of Non-Structural Elements Such as Services, Fixtures, and Mountings—Case Studies. Seismic Retrofitting—Weakness in Existing Buildings, Aging, Concepts in Repair, Restoration, and Seismic Strengthening.

UNIT - V

Planning and Design Considerations for Seismic Safety— General Planning and Design Considerations; Building forms, Horizontal and Vertical Eccentricities, Mass and Stiffness Distribution, Soft Storey Effects, Etc.; Seismic Effects Related to Building Configuration. Plan and Vertical Irregularities, Redundancy, and Setbacks. Construction Details— Various Types of Foundations, Soil Stabilization, Retaining Walls, Plinth Fill, Flooring, Walls, Openings, Roofs, Terraces, Parapets, Boundary Walls, Underground and Overhead Tanks, Staircases, and Isolation of Structures. Innovative Construction Materials and Techniques. Local Practices— Traditional Regional Responses. Computational Investigation Techniques.

TEXT BOOKS:

- 1. David Alexander, Natural Disasters, 1st Edition, CRC Press, 2017.
- 2. Edward A. Keller and Duane E. DeVecchio, *Natural Hazards: Earth's Processes as Hazards, Disasters, and Catastrophes*, 5th Edition, Routledge, 2019.

REFRENCE BOOKS:

- 1. Ben Wisner, J.C. Gaillard, and Ilan Kelman (Editors), *Handbook of Hazards and Disaster Risk Reduction and Management*, 2nd Edition, Routledge, 2012.
- 2. Damon P. Coppola, *Introduction to International Disaster Management*, 4th Edition, Butterworth-Heinemann, 2020.
- 3. BimalKanti Paul, Environmental Hazards and Disasters: Contexts, Perspectives and Management, 2nd Edition, Wiley-Blackwell, 2020.

Online Learning Resources:

https://nptel.ac.in/courses/124107010

https://onlinecourses.swayam2.ac.in/cec19_hs20/preview

Course Code	SUSTAINABILITY IN ENGINEERING	L	T	P	C
23CET20	PRACTICES Open Elective-II	3	0	0	3
Semester					VI

Course Objectives: The objectives of this course are to make the student :

- 1. To understand the fundamentals of sustainability, the carbon cycle, and the environmental impact of construction materials.
- 2. To analyze sustainable construction materials, their durability, and life cycle assessment.
- 3. To apply energy calculations in construction materials and assess their embodied energy.
- 4. To evaluate green building standards, energy codes, and performance ratings.
- 5. To assess the environmental effects of energy use, climate change, and global warming.

Course Outcomes: After successful completion of this course, students will be able to:

- 1. Understand the fundamentals of sustainability, the carbon cycle, and the environmental impact of construction materials.
- 2. Analyze sustainable construction materials, their durability, and life cycle assessment.
- 3. Apply energy calculations in construction materials and assess their embodied energy.
- 4. Evaluate green building standards, energy codes, and performance ratings.
- 5. Assess the environmental effects of energy use, climate change, and global warming.

UNIT-I

INTRODUCTION Introduction and Definition of Sustainability - Carbon Cycle - Role of Construction Material: Concrete and Steel, Etc. - CO2Contribution From Cement and Other Construction Materials.

UNIT - II

MATERIALS USED in SUSTAINABLE CONSTRUCTION Construction Materials and Indoor Air Quality - No/Low Cement Concrete - Recycled and Manufactured Aggregate - Role of QC and Durability - Life Cycle and Sustainability.

UNIT - III

ENERGY CALCULATIONS

Components of Embodied Energy - Calculation of Embodied Energy for Construction Materials - Energy Concept and Primary Energy - Embodied Energy Via-A-Vis Operational Energy in Conditioned Building - Life Cycle Energy Use

UNIT-IV

GREEN BUILDINGS Control of Energy Use in Building - ECBC Code, Codes in Neighboring Tropical Countries - OTTV Concepts and Calculations – Features of LEED and TERI – GRIHA Ratings - Role of Insulation and Thermal Properties of Construction Materials - Influence of Moisture Content and Modeling - Performance Ratings of Green Buildings - Zero Energyy Building

UNIT - V

ENVIRONMENTAL EFFECTS Non-Renewable Sources of Energy and Environmental Impact— Energy Norm, Coal, Oil, Natural Gas - Nuclear Energy - Global Temperature, Green House Effects, Global Warming - Acid Rain: Causes, Effects and Control Methods - Regional Impacts of Temperature Change.

TEXT BOOKS:

- 1. Charles J Kibert, Sustainable Construction: Green Building Design & Delivery, 4th Edition, Wiley Publishers 2016.
 - 2. Steve Goodhew, Sustainable Construction Process, Wiley Blackwell, UK, 2016.

REFRENCE BOOKS:

- 1. Craig A. Langston & Grace K.C. Ding, Sustainable Practicesin the Built Environment, Butterworth Heinemann Publishers, 2011.
- 2. William P Spence, Construction Materials, Methods & Techniques (3e), Yesdee Publication Pvt. Ltd, 2012.

Online Learning Resources:

https://archive.nptel.ac.in/courses/105/105/105105157/

Course Code	RENEWABLE ENERGY SOURCES	L	T	P	C
23EET18	Open Elective-II	3	0	0	3
Semester					VI

Course Outcomes (CO): At the end of the course the student will be able to:

- CO 1: Understand principle operation of various renewable energy sources. L1
- CO 2: Identify site selection of various renewable energy sources. L2
- CO 3: Analyze various factors affecting on solar energy measurements, wind energy conversion techniques, Geothermal, Biomasss, Tidal Wave and Fuel cell energies L3
- CO 4: Design of Solar PV modules and considerations of horizontal and vertical axis Wind energy systems. L5
- CO 5: Apply the concepts of Geo Thermal Energy, Ocean Energy, Bio mass and Fuel Cells for generation of power. L4

UNIT I Solar Energy: Solar radiation - beam and diffuse radiation, solar constant, Sun at Zenith, attenuation and measurement of solar radiation, local solar time, derived solar angles, sunrise, sunset and day length. flat plate collectors, concentrating collectors, storage of solar energy-thermal storage.

UNIT II PV Energy Systems: Introduction, The PV effect in crystalline silicon basic principles, the film PV, Other PV technologies, Solar PV modules from solar cells, mismatch in series and parallel connections design and structure of PV modules, Electrical characteristics of silicon PV cells and modules, Stand-alone PV system configuration, Grid connected PV systems.

UNIT III Wind Energy: Principle of wind energy conversion; Basic components of wind energy conversion systems; wind mill components, various types and their constructional features; design considerations of horizontal and vertical axis wind machines: analysis of aerodynamic forces acting on wind mill blades; wind data and energy estimation and site selection considerations.

UNIT IV Geothermal Energy: Estimation and nature of geothermal energy, geothermal sources and resources like hydrothermal, geo-pressured hot dry rock, magma. Advantages, disadvantages and application of geothermal energy, prospects of geothermal energy in India.

UNIT – V Miscellaneous Energy Technologies: Ocean Energy: Tidal Energy-Principle of working, Operation methods, advantages and limitations. Wave Energy-Principle of working, energy and power from waves, wave energy conversion devices, advantages and limitations. Bio mass Energy: Biomass conversion technologies, Biogas generation plants, Classification, advantages and disadvantages, constructional details, site selection, digester design consideration Fuel cell: Principle of working of various types of fuel cells and their working, performance and limitations.

Text books:

- 1.G. D. Rai, —Non-Conventional Energy Sources, 4th Edition, Khanna Publishers, 2000.
- 2. Chetan Singh Solanki Solar Photovoltaics fundamentals, technologies and applications 2nd Edition PHI Learning Private Limited. 2012.

Reference Books:

- 1. Stephen Peake, —Renewable Energy Power for a Sustainable Futurell, Oxford International Edition, 2018.
- 2.S. P. Sukhatme, —Solar Energy, 3rd Edition, Tata Mc Graw Hill Education Pvt. Ltd, 2008.
- 3.B H Khan, Non-Conventional Energy Resources, 2nd Edition, Tata Mc Graw Hill Education Pvt Ltd, 2011.
- 4.S. Hasan Saeed and D.K.Sharma,—Non-Conventional Energy Resources#,3rd Edition, S.K.Kataria& Sons, 2012.
- 5.G. N. Tiwari and M.K.Ghosal, —Renewable Energy Resource: Basic Principles and Applications, Narosa Publishing House, 2004.

Online Learning Resources:

- 1. https://nptel.ac.in/courses/103103206
- 2. https://nptel.ac.in/courses/108108078

Course Code	AUTOMATION AND ROBOTICS	L	T	P	C
23MET20	Open Elective-II	3	0	0	3
	Semester				

Course Objectives: The objectives of the course are

- 1. Fundamentals of industrial automation, production types, automation strategies, and hardware elements used in modern manufacturing processes.
- 2. Understanding of automated manufacturing systems, and strategies for improving productivity and flexibility in industrial automation.
- 3. Knowledge of industrial automation and robotics, sensors, and end-effector design for modern manufacturing environments.
- 4. Explain industrial automation and robotics, and trajectory planning for intelligent and efficient manufacturing applications.
- 5. Familiarity of industrial automation and robotics, and practical applications in manufacturing processes.

Course Outcomes (CO): At the end of the course the student will be able to:

- CO 1: Understand and analyze the structure and functions of automated manufacturing systems, and evaluate hardware components for efficient production. L2,L4,L5
- CO 2: Analyze and design automated flow lines with or without buffer storage, perform quantitative evaluations, apply assembly line balancing techniques. L4,L5,L6
- CO 3: Classify robot configurations, select suitable actuators and sensors, analyze and apply automation and robotics principles to optimize production efficiency and flexibility. L2,L3,L4
- CO 4: Apply kinematic and dynamic modeling using D-H notation and select appropriate hardware and control strategies for real-world industrial scenario to analyze and design automated and robotic systems. L3,L4, L5
- CO 5: Design, program, and implement robotic systems, understand and apply robotics technology to manufacturing tasks. . L1,L3,L6
- **UNIT-I Introduction to Automation:** Introduction to Automation, Need, Types, Basic elements of an automated system, Manufacturing Industries, Types of production, Functions in manufacturing, Organization and information processing in manufacturing, Automation strategies and levels of automation, Hardware components for automation and process control, mechanical feeders, hoppers, orienters, high speed automatic insertion devices.
- **UNIT –II Automated flow lines**: Automated flow lines, Part transfer methods and mechanisms, types of Flow lines, flow line with/without buffer storage, Quantitative analysis of flow lines. Assembly line balancing: Assembly process and systems assembly line, line balancing methods, ways of improving line balance, flexible assembly lines.
- **UNIT- III Introduction to Industrial Robotics:** Introduction to Industrial Robotics, Classification of Robot Configurations, functional line diagram, degrees of freedom. Components common types of arms, joints grippers, factors to be considered in the design of grippers. Robot actuators and Feedback

components: Actuators, Pneumatic, Hydraulic actuators, Electric & Stepper motors, comparison. Position sensors - potentiometers, resolvers, encoders - velocity sensors, Tactile sensors, Proximity sensors.

UNIT- IV Manipulator Kinematics: Manipulator Kinematics, Homogenous transformations as applicable to rotation and transition - D-H notation, Forward inverse kinematics. Manipulator Dynamics: Differential transformations, Jacobians, Lagrange - Euler and Newton - Euler formations. Trajectory Planning: Trajectory Planning and avoidance of obstacles path planning, skew motion, joint integrated motion - straight line motion.

UNIT- V Robot Programming: Robot Programming, Methods of programming - requirements and features of programming languages, software packages. Problems with programming languages. Robot Application in Manufacturing: Material Transfer - Material handling, loading and unloading - Process - spot and continuous arc welding & spray painting - Assembly and Inspection.

Text Books:

- 1. Automation , Production systems and CIM,M.P. Groover /Pearson Edu.
- 2. Industrial Robotics M.P. Groover, TMH.

References:

- 1. Robotics, Fu K S, McGraw Hill, 4th edition, 2010.
- 2. An Introduction to Robot Technology, P. Coiffet and M. Chaironze, Kogam Page Ltd. 1983 London.
- 3. Robotic Engineering, Richard D. Klafter, Prentice Hall
- 4. Robotics, Fundamental Concepts and analysis Ashitave Ghosal, Oxford Press, 1/e, 2006
- 5. Robotics and Control , Mittal R K & Nagrath I J , TMH.

Online Learning Resources:

https://www.youtube.com/watch?v=yxZm9WQJUA0&list=PLRLB5WCqU54UJG45UnazSYmnmhl-gt76o

https://www.youtube.com/watch?v=6f3bvIhSWyM&list=PLRLB5WCqU54X5Vy4DwjfSODT3ZJgwEjyE

Course Code	OPERATING SYSTEMS	L	T	P	С
23CST20	Open Elective-II	3	0	0	3
	Semester			1	VI

Course Objectives: The main objectives of the course is to make student

- Understand the basic concepts and principles of operating systems, including process management, memory management, file systems, and Protection
- Make use of process scheduling algorithms and synchronization techniques to achieve better performance of a computer system.
- Illustrate different conditions for deadlock and their possible solutions.

Course Outcomes: After completion of the course, students will be able to

CO1: Describe the basics of the operating systems, mechanisms of OS to handle processes, threads, and their communication. (L1)

CO2: Understand the basic concepts and principles of operating systems, including process management, memory management, file systems, and Protection. (L2)

CO3: Make use of process scheduling algorithms and synchronization techniques to achieve better performance of a computer system. (L3)

CO4: Illustrate different conditions for deadlock and their possible solutions. (L2) □ Analyze the memory management and its allocation policies. (L4)

CO5: Able to design and implement file systems, focusing on file access methods, directory structure, free space management, and also explore various protection mechanisms,

UNIT - I Operating Systems Overview, System Structures Lecture 8Hrs

Operating Systems Overview: Introduction, Operating system functions, Operating systems operations, Computing environments, Open-Source Operating Systems System Structures: Operating System Services, User and Operating-System Interface, systems calls, Types of System Calls, system programs, Operating system Design and Implementation, Operating system structure, Operating system debugging, System Boot.

UNIT - II Process Concept, Multithreaded Programming, Process Scheduling, Inter-process Communication Lecture 10Hrs

Process Concept: Process scheduling, Operations on processes, Inter-process communication, Communication in client server systems. Multithreaded Programming: Multithreading models, Thread libraries, Threading issues, Examples. Process Scheduling: Basic concepts, Scheduling criteria, Scheduling algorithms, Multiple processor scheduling, Thread scheduling, Examples. Inter-process Communication: Race conditions, Critical Regions, Mutual exclusion with busy waiting, Sleep and wakeup, Semaphores, Mutexes, Monitors, Message passing, Barriers, Classical IPC Problems - Dining philosophers problem, Readers and writers problem.

UNIT - III Memory-Management Strategies, Virtual Memory Management

Memory-Management Strategies: Introduction, Swapping, Contiguous memory allocation, Paging, Segmentation, Examples. Virtual Memory Management: Introduction, Demand paging, Copy on-write, Page replacement, Frame allocation, Thrashing, Memory-mapped files, Kernel memory allocation, Examples.

UNIT - IV Deadlocks, File Systems

Deadlocks: Resources, Conditions for resource deadlocks, Ostrich algorithm, Deadlock detection And recovery, Deadlock avoidance, Deadlock prevention. File Systems: Files, Directories, File system implementation, management and optimization. Secondary-Storage Structure: Overview of disk structure, and attachment, Disk scheduling, RAID structure, Stable storage implementation.

UNIT - V System Protection, System Security

System Protection: Goals of protection, Principles and domain of protection, Access matrix, Access control, Revocation of access rights. System Security: Introduction, Program threats, System and network threats, Cryptography as a security, User authentication, implementing security defenses, firewalling to protect systems and networks, Computer security classification. Case Studies: Linux, Microsoft Windows.

Textbooks:

- 1. Silberschatz A, Galvin PB, and Gagne G, Operating System Concepts, 9th edition, Wiley, 2016.
- 2. Tanenbaum A S, Modern Operating Systems, 3rd edition, Pearson Education, 2008. (Topics: Interprocess Communication and File systems.)

Reference Books:

- 1. Tanenbaum A S, Woodhull A S, Operating Systems Design and Implementation, 3rd edition, PHI, 2006.
- 2. Dhamdhere D M, Operating Systems A Concept Based Approach, 3rd edition, Tata McGraw Hill, 2012.
- 3. Stallings W, Operating Systems -Internals and Design Principles, 6th edition, Pearson Education, 2009
- 4. Nutt G, Operating Systems, 3rd edition, Pearson Education, 2004

Online Learning Resources:

https://nptel.ac.in/courses/106/106/106106144/ http://peterindia.net/OperatingSystems.html

Course Code	INTRODUCTION TO MACHINE	L	T	P	C
23CST27	LEARNING	2	0	Λ	2
	Open Elective-II	3	U	U	3
Semester					VI

Course Objectives: The objectives of the course are

- Define machine learning and its different types (supervised and unsupervised) and understand their applications.
- Apply supervised learning algorithms including decision trees and k-nearest neighbors (k-NN).
- Implement unsupervised learning techniques, such as K-means clustering

•

Course Outcomes:

CO1: Identify machine learning techniques suitable for a given problem. (L3)

CO2: Solve real-world problems using various machine learning techniques. (L3)

CO3: Apply Dimensionality reduction techniques for data preprocessing. (L3)

CO4: Explain what is learning and why it is essential in the design of intelligent machines. (L2)

CO5: Evaluate Advanced learning models for language, vision, speech, decision making etc. (L5)

UNIT-I: Introduction to Machine Learning: Evolution of Machine Learning, Paradigms for ML, Learning by Rote, Learning by Induction, Reinforcement Learning, Types of Data, Matching, Stages in Machine Learning, Data Acquisition, Feature Engineering, Data Representation, Model Selection, Model Learning, Model Evaluation, Model Prediction, Search and Learning, Data Sets.

UNIT-II: Nearest Neighbor-Based Models: Introduction to Proximity Measures, Distance Measures, Non-Metric Similarity Functions, Proximity Between Binary Patterns, Different Classification Algorithms Based on the Distance Measures ,K-Nearest Neighbor Classifier, Radius Distance Nearest Neighbor Algorithm, KNN Regression, Performance of Classifiers, Performance of Regression Algorithms.

UNIT-III: Models Based on Decision Trees: Decision Trees for Classification, Impurity Measures, Properties, Regression Based on Decision Trees, Bias-Variance Trade-off, Random Forests for Classification and Regression.

The Bayes Classifier: Introduction to the Bayes Classifier, Bayes' Rule and Inference, The Bayes Classifier and its Optimality, Multi-Class Classification | Class Conditional Independence and Naive Bayes Classifier (NBC)

UNIT-IV: Linear Discriminants for Machine Learning: Introduction to Linear Discriminants, Linear Discriminants for Classification, Perceptron Classifier, Perceptron Learning Algorithm, Support Vector Machines, Linearly Non-Separable Case, Non-linear SVM, Kernel Trick, Logistic Regression, Linear Regression, Multi-Layer Perceptrons (MLPs), Backpropagation for Training an MLP.

UNIT-V: Clustering: Introduction to Clustering, Partitioning of Data, Matrix Factorization | Clustering of Patterns, Divisive Clustering, Agglomerative Clustering, Partitional Clustering, K-Means Clustering, Soft Partitioning, Soft Clustering, Fuzzy C-Means Clustering, Rough Clustering, Rough K-Means Clustering Algorithm, Expectation Maximization-Based Clustering, Spectral Clustering.

Textbooks: 1.—Machine Learning Theory and Practicel, M N Murthy, V S Ananthanarayana, Universities Press (India), 2024

Reference Books:

- 1.—Machine Learningl, Tom M. Mitchell, McGraw-Hill Publication, 2017
- 2.—Machine Learning in Action|,Peter Harrington, DreamTech
- 3.—Introduction to Data Mining, Pang-Ning Tan, Michel Stenbach, Vipin Kumar, 7th Edition, 2019.

Course Code	OPERATIONS RESEARCH	L	T	P	C
23BST24	Open Elective-II	3	0	0	3
	Semester	•		7	/ I

Course Objective:

- 1. Understand the fundamental concepts and scope of optimization techniques and their applications in engineering and management.
- 2. Develop proficiency in formulating and solving linear programming problems using standard methods.
- 3. Gain insights into specialized optimization models such as transportation and assignment problems.
- 4. Learn to model and solve nonlinear and unconstrained optimization problems using appropriate mathematical techniques.
- 5. Apply geometric programming approaches to solve real-world optimization challenges.

Course Outcomes (CO): After completion of the course, students will be able to

- CO1. Explain Understand the meaning, purpose, tools of Operations Research and linear programming in solving practical problems in industry. L2,L3
- CO2. Interpret the Dynamic programming solutions and infer solutions to the real-world problems.. L3,L5
- CO3. Develop mathematical skills to analyze and solve nonlinear programming models arising from a wide range of applications.. L3
- CO4. Apply the concept of non-linear programming for solving the problems involving non-linear constraints and objectives L2,L3.
- CO5. Apply the concept of unconstrained geometric programming for solving the problems involving non-linear constraints and objectives.. L3,L5

UNIT – I: Linear programming I:

8 hr

Review of LPP formulation, Simplex method, two-phase and Big M methods.

Duality in Linear Programming Symmetric Primal-Dual Relations, General Primal-Dual Relations, Duality Theorem, Dual Simplex Method, Transportation Problem and assignment problem, Complementary slackness Theorem.

UNIT – II: Dyanamic programming

Introduction-Principle of optimality – Decision Tree and Bellman's principle of optimality – Characteristics of DPP-Solution of LPP by dynamic programming.

UNIT – III Non-linear programming: Unconstrained optimization techniques 8 hr

Introduction: Classification of Unconstrained minimization methods.

Direct Search Methods: Random Search Methods: Descent Method and Fletcher Powell Method, Grid Search Method

UNIT – IV Non-linear programming: Constrained optimization techniques 8 hr

Introduction, Characteristics of a constrained problem, Random Search Methods, complex method, Sequential linear programming, Basic approach in methods of Feasible directions, Zoutendijk's method of feasible directions: direction finding problem, determination of step length, Termination criteria.

UNIT-V Geometric Programming:

8 hr

Unconstrained Minimization Problems: solution of unconstrained geometric programming using differential calculus and arithmetic-geometric inequality.

Constrained minimization Problems: Solution of a constrained geometric programming problem, primal-dual programming in case of less-than inequalities, geometric programming with mixed inequality constraints.

TEXT BOOK:

- 1. Singiresu S Rao., Engineering Optimization: Theory and Practices, New Age Int. (P) Ltd. Publishers, New Delhi.
- 2. J. C. Panth, Introduction to Optimization Techniques, (7-e) Jain Brothers, New Delhi.
- 3. S.D Sharma, "Operation Research", Kedarnath Ramanth publishers, 2009.

REFERENCES:

- 1. Harvey M. Wagner, Principles of Operation Research, Printice-Hall of India Pvt. Ltd. New Delhi
- 2. Peressimi A.L., Sullivan F.E., Vhl, J. J. Mathematics of Non-linear Programming, Springer Verlag.

Web Reference:

- https://onlinecourses.nptel.ac.in/noc24_ee122/preview
- https://archive.nptel.ac.in/courses/111/105/111105039/
- https://onlinecourses.nptel.ac.in/noc21_ce60/preview

Course Code	MATHEMATICAL FOUNDATION OF	L	T	P	C
23BST29	QUANTUM TECHNOLOGIES	3	0	0	3
	Open Elective-II				
	Semester				

Course Objectives:

- To provide a strong mathematical foundation for understanding Quantum Mechanics.
- To equip students with fundamental basis of the statistical theory, Conclusions from Experiments, Measurement, and reversibility.
- To enhance the ability to apply the concept in Thermodynamics, Reversibility and equilibrium problems and Macroscopic Measurement.
- To develop critical problem-solving skills for composite system and measuring process.

Course Outcomes:

After successful completion of this course, the students should be able to:

COs	Statements	Blooms level
CO1	Understand the Transformation theory and Hilbert space.	L1 (Understand)
CO2	Analyze the properties and operators of Hilbert space and apply Eigen values to it.	L3, L4 (Apply and Analyze)
CO3	Apply statistics to measure theory, uncertainty relations and radiation theory.	L3 (Apply)
CO4	Evaluate problems on reversibility, equilibrium and macroscopic measurements.	L5 (Evaluate)
CO5	Formulate problems of composite system and measuring process	L6 (Formulation)

UNIT I: Introductory Considerations (08)

The origin of the Transformation Theory, The Original Formulation of Quantum Mechanics, The Equivalence of the two Theories: (i) The Transformation Theory, (ii) Hilbert Space.

UNIT II: Abstract Hilbert Space (10)

The definition of Hilbert space, The Geometry of Hilbert space, Degression on the Conditions A-E, Closed linear Manifolds, Operators in Hilbert space, The Eigen Value Problem, Continuation, Initial Consideration concerning the Eigenvalue Problem, Degression on the Existence and Uniqueness of solutions of the Eigenvalue Problems, Cumulative operators, The Trace.

UNIT III: The Quantum Statistics (08)

The statistical assertions of quantum mechanics, the statistical interpretation, Simultaneous Measurability and Measurability in General, Uncertainty Relations, Projections as Propositions, Radiation Theory.

UNIT IV: Deductive development of the Theory and general considerations (08)

The fundamental basis of the statistical theory, Conclusions from Experiments.

Measurement and reversibility, Thermodynamics Considerations, Reversibility and equilibrium problems, The Macroscopic Measurement.

UNIT V: The measuring Process (06)

Formulation of the problems, Composite systems, discussion of the Measuring process.

Textbooks:

- 1. John von Neumann and Robert T Beyer, Mathematical Foundations of Quantum Mechanics, Princeton Univ. Press (1996).
- 2. Srinivas, M. D., Measurements and Quantum Probabilities, University Press, Hyderabad (2001).

Reference Books:

- 1. Leonard Schiff, Quantum Mechanics, Mc, Graw Hill (Education) (2010).
- 2. Parthasarathy. K. R., Mathematical Foundations of Quantum, Hindustan Book Agency, New Delhi.
- 3. Gerad Tesch, Mathematical Methods in Quantum Mechanics with application to Schrodinger operators, Graduate Studies in Mathematics, 99, AMS, Providence, 2009.

Course Code	PHYSICS OF ELECTRONIC MATERIALS	L	T	P	C
23BST25	AND DEVICES	3	0	0	3
	Open Elective-II	3	U	U	3
Semester					VI

Course Objectives: By the end of this course, students will be able to:

- 1. To make the students to understand the concept of crystal growth, defects in crystals and thin films.
- 2. To provide insight into various semiconducting materials and their properties.
- 3. To develop a strong foundation in semiconductor physics and device engineering.
- 4. To elucidate excitonic and luminescent processes in solid-state materials.
- 5. To understand the principles, technologies, and applications of modern display systems.

Course Outcomes (CO): After completion of the course, students will be able to

- CO1. Understand crystal growth and thin film preparation L1,L2
- CO2. Summarize the basic concepts of semiconductors L1,L2
- CO3. Illustrate the working of various semiconductor devices.L1,L2, L3
- CO4. Analyze various luminescent phenomena and the devices based on these concepts L1,L2,L3.
- CO5. Explain the working of different display devices . L1,,L2

UNIT-I Fundamentals of Materials Science 9H

Introduction, Phase rule, Phase Diagram, Elementary idea of Nucleation and Growth, Methods of crystal growth. The basic idea of point, line, and planar defects. Concept of thin films, preparation of thin films, Deposition of thin film using sputtering methods (RF and glow discharge).

UNIT II Semiconductors 9H

Introduction, charge carriers in semiconductors, effective mass, Diffusion and drift, Diffusion and recombination, Diffusion length. The Fermi level & Fermi-Dirac distribution, Electron and Hole in quantum well, Change of electron-hole concentration- Qualitative analysis, Temperature dependency of carrier concentration, Conductivity and mobility, Effects of temperature and doping on mobility, High field effects.

UNIT III Physics of Semiconductor Devices: 9H

Introduction, Band structure, PN junctions and their typical characteristics under equilibrium and under bias, Heterojunctions, Transistors, MOSFETs.

UNIT IV Excitons and Luminescence: 9H

Luminescence: Different types of luminescence, basic definitions, Light emission in solids, Inter-band luminescence, Direct and indirect gap materials. Photoluminescence: General Principles of photoluminescence, Excitation and relaxation, OLED, Quantum-dot. Electro-luminescence: General Principles of electroluminescence, light emitting diode, diode laser.

UNIT V Display devices: 9H

LCD, three-dimensional display: Holographic display, light-field displays: Head-mounted display, MOEMS (Micro-Opto-Electro-Mechanical Systems) and MEMS displays.

Textbooks:

- 1. Principles of Electronic Materials and Devices-S.O. Kasap, McGraw-Hill Education (India) Pvt. Ltd.,4thedition, 2021.
- 2. Semiconductor physics & devices: basic principles, 4th Edition, McGraw-Hill, 2012.

Reference Books:

- 1. Solid State Electronic Devices -B.G. Streetman and S. Banerjee, PHI Learning,6th edition
- 2. Electronic Materials Science- Eugene A. Irene, Wiley, 2005
- 3. Electronic Components and Materials, Grover and Jamwal, DhanpatRai and Co., New Delhi., 2012.
- 4. An Introduction to Electronic Materials for Engineers-Wei Gao, Zhengwei Li, Nigel Sammes, World Scientific Publishing Co. Pvt. Ltd. 2nd Edition,2011

NPTEL course links:

https://nptel.ac.in/courses/113/106/113106062/ https://onlinecourses.nptel.ac.in/noc20_ph24/preview

Course Code	CHEMISTRY OF POLYMERS AND	L	T	P	C
23BST26	APPLICATIONS Open Elective-II	3	0	0	3
	Semester			7	VΙ

Course Objectives: By the end of this course, students will be able to:

- 1. To understand the basic principles of polymers
- 2. To understand natural polymers and their applications.
- 3. To impart knowledge to the students about synthetic polymers, their preparation and importance.
- 4. To enumerate the applications of hydogel polymers
- 5. To enumerate applications of conducting and degradable polymers in engineering.

Course Outcomes (CO): After completion of the course, students will be able to

- CO1. Explain polymerization mechanism, Differentiate addition, condensation polymerizations, Describe measurement of molecular weight of polymer L2, L3, L4
- CO2. Describe the physical and chemical properties of natural polymers and Modified cellulosics. L1,L2, L4
- CO3. Differentiate Bulk, solution, Suspension and emulsion polymerization, Describe fibers and elastomers, Identify the thermosetting and thermo polymers. L1,L2, L3
- CO4. Identify types of polymer networks, Describe methods involve in hydrogel preparation, Explain applications of hydrogels in drug delivery, L1,L2
- CO5. Explain classification and mechanism of conducting and degradable polymers. L1,L2
- **Unit I: Polymers-Basics and Characterization:-** Basic concepts: monomers, repeating units, degree of polymerization, linear, branched and network polymers, classification of polymers, Polymerization: addition, condensation, copolymerization and coordination polymerization. Average molecular weight concepts: number, weight and viscosity average molecular weights, polydispersity and molecular weight distribution. Measurement of molecular weight: End group, viscosity, light scattering, osmotic and ultracentrifugation methods, analysis and testing of polymers.
- **Unit II: Natural Polymers & Modified cellulosics** Natural Polymers: Chemical & Physical structure, properties, source, important chemical modifications, applications of polymers such as cellulose, lignin, starch, rosin, shellac, latexes, vegetable oils and gums, proteins. Modified cellulosics: Cellulose esters and ethers such as Ethyl cellulose, CMC, HPMC, cellulose acetals, Liquid crystalline polymers; specialty plastics- PES, PAES, PEEK, PEA.
- **Unit III: Synthetic Polymers** Addition and condensation polymerization processes–Bulk, Solution, Suspension and Emulsion polymerization. Preparation and significance, classification of polymers based on physical properties. Thermoplastics, Thermosetting plastics, Fibers and elastomers, General Applications. Preparation of Polymers based on different types of monomers, Olefin polymers(PE,PVC), Butadiene polymers(BUNA-S,BUNA-N), nylons, Urea-formaldehyde, phenol formaldehyde, Melamine Epoxy and Ion exchange resins.

Unit-IV: Hydrogels of Polymer networks Definitions of Hydrogel, polymer networks, Types of polymer networks, Methods involved in hydrogel preparation, Classification, Properties of hydrogels, Applications of hydrogels in drug delivery.

Unit – V: Conducting and Degradable Polymers: Conducting polymers: Introduction, Classification, Mechanism of conduction in Poly Acetylene, Poly Aniline, Poly Thiophene, Doping, Applications.

Degradable polymers: Introduction, Classifications, Examples, Mechanism of degradation, poly lactic acid, Nylon-6, Polyesters, applications.

Text Books:

- 1. A Text book of Polymer science, Billmayer, 3rdedition, Hardcover Import, 2 May 1984.
- 2. Polymer Chemistry by G.S. Mishra, 2nd Edition, New Age International Publishers, 2004
- 3. Polymer Science, V.R. Gowariker, N.V. Viswanathan, and JayadevSreedhar, 1st Edition, New Age International Publishers, 1986.

References Books:

- 1. Organic Polymer Chemistry, K.J. Saunders, 2nd Edition, Chapman and Hall, 1973.
- 2. Advanced Organic Chemistry, B.Miller, Prentice Hall
- 3. Polymer Science and Technology by PremamoyGhosh, 3rd edition, McGraw-Hill, 2010.

http://www.digimat.in/nptel/courses/video/104105039/L01.html https://www.youtube.com/watch?v=ACPDEy3evqE

http://www.digimat.in/nptel/courses/video/103107221/L60.html

Course Code	ACADEMIC WRITING AND PUBLIC	L	T	P	C
23BST27	SPEAKING	2	Λ	Λ	2
	Open Elective-II	3	U	U	3
Semester			VI		

Course Objectives: By the end of this course, students will be able to:

- 1. To encourage all round development of the students by focusing on writing skills
- 2. To make the students aware of non-verbal skills
- 3. To develop analytical skills
- 4. To deliver effective public speeches

Course Outcomes (CO): After completion of the course, students will be able to

- CO1. Understand various elements of Academic Writing L1,L2
- CO2. Identify sources and avoid plagiarism L1,L2
- CO3. Demonstrate the knowledge in writing a Research paper L3
- CO4. Analyse different types of essays L4
- CO5. Assess the speeches of others and know the positive strengths of speakers build confidence in giving an impactful presentation to the audience L3

Unit – **I:** Introduction to Academic Writing

Introduction to Academic Writing – Essential Features of Academic Writing – Courtesy – Clarity – Conciseness – Correctness – Coherence – Completeness – Types – Descriptive, Analytical, Persuasive, Critical writing

Unit – II: Academic Journal Article

Art of condensation- summarizing and paraphrasing - Abstract Writing, writing Project Proposal, writing application for internship, Technical/Research/Journal Paper Writing - Conference Paper writing - Editing, Proof Reading - Plagiarism

Unit – III: Essay & Writing Reviews

Compare and Contrast – Argumentative Essay – Exploratory Essay – Features and Analysis of Sample Essays – Writing Book Report, Summarizing, Book/film Review- SoP

Unit-IV: Public Speaking

Introduction, Nature, characteristics, significance of Public Speaking – Presentation – 4 Ps of Presentation – Stage Dynamics – Answering Strategies – Analysis of Impactful Speeches- Speeches for Academic events

UNIT-V:

Public Speaking and Non-Verbal Delivery

Body Language – Facial Expressions-Kinesics – Oculesics – Proxemics – Haptics – Chronomics - Paralanguage - Signs

Textbooks:

- 1. *Critical Thinking, Academic Writing and Presentation Skills*: MG University Edition Paperback 1 January 2010 Pearson Education; First edition (1 January 2010)
- 2. Pease, Allan & Barbara. The Definitive Book of Body LanguageRHUS Publishers, 2016

Reference Books:

- 1. Alice Savage, Masoud Shafiei Effective Academic Writing, 2Ed., 2014 Oxford University Press.
- 2. Shalini Verma, *Body Language*, S Chand Publications 2011.
- 3. Sanjay Kumar and Pushpalata, Communication Skills 2E 2015, Oxford.
- 4. Sharon Gerson, Steven Gerson, Technical Communication Process and Product, Pearson, New Delhi, 2014
- 5. Elbow, Peter. Writing with Power. OUP USA, 1998

Online Learning Resources:

- 1. https://youtu.be/NNhTIT81nH8
- 2. phttps://www.youtube.com/watch?v=478ccrWKY-A
- 3. https://www.youtube.com/watch?v=nzGo5ZC1gMw
- 4. https://www.youtube.com/watch?v=Qve0ZBmJMh4
- https://courses.lumenlearning.com/publicspeakingprinciples/chapter/chapter-12-nonverbal-aspectsof-delivery/
- 6. https://onlinecourses.nptel.ac.in/noc21_hs76/preview
- 7. https://archive.nptel.ac.in/courses/109/107/109107172/#
- 8. https://archive.nptel.ac.in/courses/109/104/109104107/